An Introduction to Nonassociative Algebras
by Richard D. Schafer
Publisher: Project Gutenberg 2008
ISBN/ASIN: 0486688135
Number of pages: 81
Description:
Concise study presents in a short space some of the important ideas and results in the theory of nonassociative algebras, with particular emphasis on alternative and (commutative) Jordan algebras. Written as an introduction for graduate students and other mathematicians meeting the subject for the first time.
Download or read it online for free here:
Download link
(PDF, TeX)
Similar books
Clifford Algebra, Geometric Algebra, and Applicationsby Douglas Lundholm, Lars Svensson - arXiv
These are lecture notes for a course on the theory of Clifford algebras. The various applications include vector space and projective geometry, orthogonal maps and spinors, normed division algebras, as well as simplicial complexes and graph theory.
(17138 views)
Lectures on Quadratic Formsby C.L. Siegel - Tata Institute of Fundamental Research
From the table of contents: Vector groups and linear inequalities (Vector groups, Lattices, Characters, Diophantine approximations); Reduction of positive quadratic forms; Indefinite quadratic forms; Analytic theory of Indefinite quadratic forms.
(13473 views)
Workbook in Higher Algebraby David Surowski
A set of notes for a Higher Algebra course. It covers Group Theory, Field and Galois Theory, Elementary Factorization Theory, Dedekind Domains, Module Theory, Ring Structure Theory, Tensor Products, Zorn’s Lemma and some Applications.
(19262 views)
Commutator Theory for Congruence Modular Varietiesby Ralph Freese, Ralph McKenzie - Cambridge University Press
This book presents the basic theory of commutators in congruence modular varieties and some of its strongest applications. The authors take an algebraic approach, using some of the shortcuts that Taylor and others have discovered.
(14859 views)