**Stochastic Integration and Stochastic Differential Equations**

by Klaus Bichteler

**Publisher**: University of Texas 2002**Number of pages**: 643

**Description**:

Written for graduate students of mathematics, physics, electrical engineering, and finance. The students are expected to know the basics of point set topology up to Tychonoff's theorem, general integration theory, and enough functional analysis to recognize the Hahn-Banach theorem.

Download or read it online for free here:

**Download link**

(DVI/PS/PDF)

## Similar books

**Lectures on Stochastic Analysis**

by

**Thomas G. Kurtz**-

**University of Wisconsin**

Covered topics: stochastic integrals with respect to general semimartingales, stochastic differential equations based on these integrals, integration with respect to Poisson measures, stochastic differential equations for general Markov processes.

(

**13670**views)

**Basic Data Analysis and More: A Guided Tour Using Python**

by

**O. Melchert**-

**arXiv**

In these lecture notes, a selection of frequently required statistical tools will be introduced and illustrated. They allow to post-process data that stem from, e.g., large-scale numerical simulations (aka sequence of random experiments).

(

**14085**views)

**Non-Uniform Random Variate Generation**

by

**Luc Devroye**-

**Springer**

The book on small field on the crossroads of statistics, operations research and computer science. The applications of random number generators are wide and varied. The study of non-uniform random variates is precisely the subject area of the book.

(

**14333**views)

**Reversible Markov Chains and Random Walks on Graphs**

by

**David Aldous, James Allen Fill**-

**University of California, Berkeley**

From the table of contents: General Markov Chains; Reversible Markov Chains; Hitting and Convergence Time, and Flow Rate, Parameters for Reversible Markov Chains; Special Graphs and Trees; Cover Times; Symmetric Graphs and Chains; etc.

(

**13690**views)