Logo

Reversible Markov Chains and Random Walks on Graphs

Reversible Markov Chains and Random Walks on Graphs
by

Publisher: University of California, Berkeley
Number of pages: 516

Description:
From the table of contents: General Markov Chains; Reversible Markov Chains; Hitting and Convergence Time, and Flow Rate, Parameters for Reversible Markov Chains; Special Graphs and Trees; Cover Times; Symmetric Graphs and Chains; Advanced L2 Techniques for Bounding Mixing Times; Some Graph Theory and Randomized Algorithms; Continuous State, Infinite State and Random Environment; Interacting Particles on Finite Graphs; Markov Chain Monte Carlo.

Home page url

Download or read it online for free here:
Download link
(1.8MB, PDF)

Similar books

Book cover: Introduction to Probability Theory and Statistics for LinguisticsIntroduction to Probability Theory and Statistics for Linguistics
by - UCLA
Contents: Basic Probability Theory (Conditional Probability, Random Variables, Limit Theorems); Elements of Statistics (Estimators, Tests, Distributions, Correlation and Covariance, Linear Regression, Markov Chains); Probabilistic Linguistics.
(8893 views)
Book cover: Stochastic Integration and Stochastic Differential EquationsStochastic Integration and Stochastic Differential Equations
by - University of Texas
Written for graduate students of mathematics, physics, electrical engineering, and finance. The students are expected to know the basics of point set topology up to Tychonoff's theorem, general integration theory, and some functional analysis.
(10365 views)
Book cover: Convergence of Stochastic ProcessesConvergence of Stochastic Processes
by - Springer
Selected parts of empirical process theory, with applications to mathematical statistics. The book describes the combinatorial ideas needed to prove maximal inequalities for empirical processes indexed by classes of sets or classes of functions.
(11389 views)
Book cover: Principles of Data AnalysisPrinciples of Data Analysis
by - Prasenjit Saha
This is a short book about the principles of data analysis. The emphasis is on why things are done rather than on exactly how to do them. If you already know something about the subject, then working through this book will deepen your understanding.
(10271 views)