**Reversible Markov Chains and Random Walks on Graphs**

by David Aldous, James Allen Fill

**Publisher**: University of California, Berkeley 2014**Number of pages**: 516

**Description**:

From the table of contents: General Markov Chains; Reversible Markov Chains; Hitting and Convergence Time, and Flow Rate, Parameters for Reversible Markov Chains; Special Graphs and Trees; Cover Times; Symmetric Graphs and Chains; Advanced L2 Techniques for Bounding Mixing Times; Some Graph Theory and Randomized Algorithms; Continuous State, Infinite State and Random Environment; Interacting Particles on Finite Graphs; Markov Chain Monte Carlo.

Download or read it online for free here:

**Download link**

(1.8MB, PDF)

## Similar books

**Random Matrix Models and Their Applications**

by

**Pavel Bleher, Alexander Its**-

**Cambridge University Press**

The book covers broad areas such as topologic and combinatorial aspects of random matrix theory; scaling limits, universalities and phase transitions in matrix models; universalities for random polynomials; and applications to integrable systems.

(

**10214**views)

**A defense of Columbo: A multilevel introduction to probabilistic reasoning**

by

**G. D'Agostini**-

**arXiv**

Triggered by a recent interesting article on the too frequent incorrect use of probabilistic evidence in courts, the author introduces the basic concepts of probabilistic inference with a toy model, and discusses several important issues.

(

**10110**views)

**Probability, Statistics and Stochastic Processes**

by

**Cosma Rohilla Shalizi**

Contents: Probability (Probability Calculus, Random Variables, Discrete and Continuous Distributions); Statistics (Handling of Data, Sampling, Estimation, Hypothesis Testing); Stochastic Processes (Markov Processes, Continuous-Time Processes).

(

**5782**views)

**An Introduction to Stochastic PDEs**

by

**Martin Hairer**-

**arXiv**

This text is an attempt to give a reasonably self-contained presentation of the basic theory of stochastic partial differential equations, taking for granted basic measure theory, functional analysis and probability theory, but nothing else.

(

**8031**views)