Complex Analysis on Riemann Surfaces

Complex Analysis on Riemann Surfaces

Publisher: Harvard University
Number of pages: 89

Contents: Maps between Riemann surfaces; Sheaves and analytic continuation; Algebraic functions; Holomorphic and harmonic forms; Cohomology of sheaves; Cohomology on a Riemann surface; Riemann-Roch; Serre duality; Maps to projective space; Line bundles; Curves and their Jacobians; Hyperbolic geometry; Quasiconformal geometry.

Download or read it online for free here:
Download link
(560KB, PDF)

Similar books

Book cover: On Riemann's Theory of Algebraic Functions and their IntegralsOn Riemann's Theory of Algebraic Functions and their Integrals
by - Macmillan and Bowes
In his scholarly supplement to Riemann's complex mathematical theory, rather than offer proofs in support of the theorem, Klein chose to offer this exposition and annotation, first published in 1893, in an effort to broaden and deepen understanding.
Book cover: Lectures On The General Theory Of Integral FunctionsLectures On The General Theory Of Integral Functions
by - Chelsea Pub. Co.
These lectures give us, in the form of a number of elegant and illuminating theorems, the latest word of mathematical science on the subject of Integral Functions. They descend to details, they take us into the workshop of the working mathematician.
Book cover: Complex AnalysisComplex Analysis
by - Kobenhavns Universitet
Contents: Holomorphic functions; Contour integrals and primitives; The theorems of Cauchy; Applications of Cauchy's integral formula; Zeros and isolated singularities; The calculus of residues; The maximum modulus principle; Moebius transformations.
Book cover: Lectures on Modular Functions of One Complex VariableLectures on Modular Functions of One Complex Variable
by - Tata institute of Fundamental Research
This is an elementary introduction to the theory of modular functions and modular forms. Basic facts from the theory of functions of a complex variable and some properties of the elementary transcendental functions are the only prerequisites.