**Lectures on The Theory of Functions of Several Complex Variables**

by B. Malgrange

**Publisher**: Tata Institute of Fundamental Research 1958**ISBN/ASIN**: 3540128751**Number of pages**: 138

**Description**:

Contents: Cauchy's formula and elementary consequences; Reinhardt domains and circular domains; Complex analytic manifolds; Analytic Continuation; Envelopes of Holomorphy; Domains of Holomorphy - Convexity Theory; d''-cohomology on the cube; Holomorphic Regular Matrices; Complementary Results; Coherent Analytic Sheaves.

Download or read it online for free here:

**Download link**

(600KB, PDF)

## Similar books

**Lectures on the Theory of Algebraic Functions of One Variable**

by

**M. Deuring**-

**Tata Institute of Fundamental Research**

We shall be dealing in these lectures with the algebraic aspects of the theory of algebraic functions of one variable. Since an algebraic function w(z) is defined by f(z,w)=0, the study of such functions should be possible by algebraic methods.

(

**4342**views)

**Complex Variables: Second Edition**

by

**R. B. Ash, W. P. Novinger**-

**Dover Publications**

The text for advanced undergraduates and graduates, it offers a concise treatment, explanations, problems and solutions. Topics include elementary theory, general Cauchy theorem and applications, analytic functions, and prime number theorem.

(

**9683**views)

**Holomorphic Spaces**

by

**S. Axler, J. McCarthy, D. Sarason**-

**Cambridge University Press**

This volume consists of expository articles on holomorphic spaces. Topics covered are Hardy spaces, Bergman spaces, Dirichlet spaces, Hankel and Toeplitz operators, and a sampling of the role these objects play in modern analysis.

(

**6058**views)

**Complex Analysis on Riemann Surfaces**

by

**Curtis McMullen**-

**Harvard University**

Contents: Maps between Riemann surfaces; Sheaves and analytic continuation; Algebraic functions; Holomorphic and harmonic forms; Cohomology of sheaves; Cohomology on a Riemann surface; Riemann-Roch; Serre duality; Maps to projective space; etc.

(

**8387**views)