Logo

Convex Geometric Analysis by Keith Ball, Vitali Milman

Large book cover: Convex Geometric Analysis

Convex Geometric Analysis
by

Publisher: Cambridge University Press
ISBN/ASIN: 0521642590
ISBN-13: 9780521642590
Number of pages: 236

Description:
Convex bodies are at once simple and amazingly rich in structure. This collection involves researchers in classical convex geometry, geometric functional analysis, computational geometry, and related areas of harmonic analysis. It is representative of the best research in a very active field that brings together ideas from several major strands in mathematics.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Fractal GeometryFractal Geometry
by - Yale University
This is an introduction to fractal geometry for students without especially strong mathematical preparation, or any particular interest in science. Each of the topics contains examples of fractals in the arts, humanities, or social sciences.
(11553 views)
Book cover: Topics in Finite Geometry: Ovals, Ovoids and Generalized QuadranglesTopics in Finite Geometry: Ovals, Ovoids and Generalized Quadrangles
by - University of Colorado Denver
The present book grew out of notes written for a course by the same name taught by the author during in 2005. Only some basic abstract algebra, linear algebra, and mathematical maturity are the prerequisites for reading this book.
(10102 views)
Book cover: Quadratic Forms and Their ApplicationsQuadratic Forms and Their Applications
by - American Mathematical Society
This volume includes papers ranging from applications in topology and geometry to the algebraic theory of quadratic forms. Various aspects of the use of quadratic forms in algebra, analysis, topology, geometry, and number theory are addressed.
(7717 views)
Book cover: Geometry and the ImaginationGeometry and the Imagination
by - Rutgers University, Newark
These are notes from an experimental mathematics course entitled Geometry and the Imagination as developed by Conway, Doyle, Thurston and others. The course aims to convey the richness, diversity, connectedness, depth and pleasure of mathematics.
(1448 views)