**Convex Geometric Analysis**

by Keith Ball, Vitali Milman

**Publisher**: Cambridge University Press 1998**ISBN/ASIN**: 0521642590**ISBN-13**: 9780521642590**Number of pages**: 236

**Description**:

Convex bodies are at once simple and amazingly rich in structure. This collection involves researchers in classical convex geometry, geometric functional analysis, computational geometry, and related areas of harmonic analysis. It is representative of the best research in a very active field that brings together ideas from several major strands in mathematics.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Fractal Geometry**

by

**Michael Frame, Benoit Mandelbrot, Nial Neger**-

**Yale University**

This is an introduction to fractal geometry for students without especially strong mathematical preparation, or any particular interest in science. Each of the topics contains examples of fractals in the arts, humanities, or social sciences.

(

**9184**views)

**Combinatorial and Computational Geometry**

by

**J. E. Goodman, J. Pach, E. Welzl**-

**Cambridge University Press**

This volume includes articles exploring geometric arrangements, polytopes, packing, covering, discrete convexity, geometric algorithms and their complexity, and the combinatorial complexity of geometric objects, particularly in low dimension.

(

**8161**views)

**Geometry, Topology and Physics**

by

**Maximilian Kreuzer**-

**Technische Universitat Wien**

From the table of contents: Topology (Homotopy, Manifolds, Surfaces, Homology, Intersection numbers and the mapping class group); Differentiable manifolds; Riemannian geometry; Vector bundles; Lie algebras and representations; Complex manifolds.

(

**9954**views)

**An Elementary Course in Synthetic Projective Geometry**

by

**Derrick Norman Lehmer**-

**Project Gutenberg**

The book gives, in a simple way, the essentials of synthetic projective geometry. Enough examples have been provided to give the student a clear grasp of the theory. The student should have a thorough grounding in ordinary elementary geometry.

(

**6378**views)