Logo

Convex Geometric Analysis by Keith Ball, Vitali Milman

Large book cover: Convex Geometric Analysis

Convex Geometric Analysis
by

Publisher: Cambridge University Press
ISBN/ASIN: 0521642590
ISBN-13: 9780521642590
Number of pages: 236

Description:
Convex bodies are at once simple and amazingly rich in structure. This collection involves researchers in classical convex geometry, geometric functional analysis, computational geometry, and related areas of harmonic analysis. It is representative of the best research in a very active field that brings together ideas from several major strands in mathematics.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Fractal GeometryFractal Geometry
by - Yale University
This is an introduction to fractal geometry for students without especially strong mathematical preparation, or any particular interest in science. Each of the topics contains examples of fractals in the arts, humanities, or social sciences.
(9184 views)
Book cover: Combinatorial and Computational GeometryCombinatorial and Computational Geometry
by - Cambridge University Press
This volume includes articles exploring geometric arrangements, polytopes, packing, covering, discrete convexity, geometric algorithms and their complexity, and the combinatorial complexity of geometric objects, particularly in low dimension.
(8161 views)
Book cover: Geometry, Topology and PhysicsGeometry, Topology and Physics
by - Technische Universitat Wien
From the table of contents: Topology (Homotopy, Manifolds, Surfaces, Homology, Intersection numbers and the mapping class group); Differentiable manifolds; Riemannian geometry; Vector bundles; Lie algebras and representations; Complex manifolds.
(9954 views)
Book cover: An Elementary Course in Synthetic Projective GeometryAn Elementary Course in Synthetic Projective Geometry
by - Project Gutenberg
The book gives, in a simple way, the essentials of synthetic projective geometry. Enough examples have been provided to give the student a clear grasp of the theory. The student should have a thorough grounding in ordinary elementary geometry.
(6378 views)