Logo

A Pedestrian Introduction to the Mathematical Concepts of Quantum Physics

A Pedestrian Introduction to the Mathematical Concepts of Quantum Physics
by

Publisher: arXiv
Number of pages: 79

Description:
These notes offer a basic introduction to the primary mathematical concepts of quantum physics, and their physical significance, from the operator and Hilbert space point of view, highlighting more what are essentially the abstract algebraic aspects of quantization in contrast to more standard treatments of such issues, while also bridging towards the path integral formulation of quantization.

Home page url

Download or read it online for free here:
Download link
(830KB, PDF)

Similar books

Book cover: An Introduction to Microlocal AnalysisAn Introduction to Microlocal Analysis
by - MIT
The origin of scattering theory is the study of quantum mechanical systems. The scattering theory for perturbations of the flat Laplacian is discussed with the approach via the solution of the Cauchy problem for the corresponding perturbed equation.
(6577 views)
Book cover: Geometry of Quantum MechanicsGeometry of Quantum Mechanics
by - Stockholms universitet, Fysikum
These are the lecture notes from a graduate course in the geometry of quantum mechanics. The idea was to introduce the mathematics in its own right, but not to introduce anything that is not directly relevant to the subject.
(9832 views)
Book cover: Mathematical Foundations of Quantum MechanicsMathematical Foundations of Quantum Mechanics
by - arXiv
The author reviews the formulation of Quantum Mechanics, and quantum theories in general, from a mathematically advanced viewpoint, essentially based on the orthomodular lattice of elementary propositions, discussing some fundamental ideas ...
(3853 views)
Book cover: Symplectic Geometry of Quantum NoiseSymplectic Geometry of Quantum Noise
by - arXiv
We discuss a quantum counterpart of certain constraints on Poisson brackets coming from 'hard' symplectic geometry. They can be interpreted in terms of the quantum noise of observables and their joint measurements in operational quantum mechanics.
(5671 views)