Logo

Lecture notes on C*-algebras, Hilbert C*-modules, and quantum mechanics

Small book cover: Lecture notes on C*-algebras, Hilbert C*-modules, and quantum mechanics

Lecture notes on C*-algebras, Hilbert C*-modules, and quantum mechanics
by

Publisher: arXiv
Number of pages: 90

Description:
This is a graduate-level introduction to C*-algebras, Hilbert C*-modules, vector bundles, and induced representations of groups and C*-algebras, with applications to quantization theory, phase space localization, and configuration space localization. The reader is supposed to know elementary functional analysis and quantum mechanics.

Home page url

Download or read it online for free here:
Download link
(1MB, PDF)

Similar books

Book cover: Basic Analysis Gently Done: Topological Vector SpacesBasic Analysis Gently Done: Topological Vector Spaces
by - King's College, London
These notes are based on lectures given as part of a mathematics MSc program. The approach here is to discuss topological vector spaces - with normed spaces considered as special cases. Contents: Topological Spaces; Nets; Product Spaces; etc.
(4795 views)
Book cover: Notes on Operator AlgebrasNotes on Operator Algebras
by - Los Alamos National Laboratory
Lecture notes on operator algebras. From the table of contents: Structure Theory I; von Neumann Algebras; States and Representations; Structure Theory II; Matrices; Automorphism Groups; Extensions; K-Theory; Nuclear C* Algebras.
(6280 views)
Book cover: Banach Spaces of Analytic FunctionsBanach Spaces of Analytic Functions
by - Prentice-Hall
A classic of pure mathematics, this advanced text explores the intersection of functional analysis and analytic function theory. Close in spirit to abstract harmonic analysis, it is confined to Banach spaces of analytic functions in the unit disc.
(3125 views)
Book cover: Hilbert Space Methods for Partial Differential EquationsHilbert Space Methods for Partial Differential Equations
by - Pitman
Written for beginning graduate students of mathematics, engineering, and the physical sciences. It covers elements of Hilbert space, distributions and Sobolev spaces, boundary value problems, first order evolution equations, etc.
(10280 views)