Basic Data Analysis and More: A Guided Tour Using Python
by O. Melchert
Publisher: arXiv 2012
Number of pages: 62
Description:
In these lecture notes, a selection of frequently required statistical tools will be introduced and illustrated. They allow to post-process data that stem from, e.g., large-scale numerical simulations. From a point of view of data analysis, the concepts and techniques introduced here are of general interest and are, at best, employed by computational aid. Consequently, an exemplary implementation of the presented techniques using the Python programming language is provided.
Download or read it online for free here:
Download link
(910KB, PDF)
Similar books

by Marcus Kracht - UCLA
Contents: Basic Probability Theory (Conditional Probability, Random Variables, Limit Theorems); Elements of Statistics (Estimators, Tests, Distributions, Correlation and Covariance, Linear Regression, Markov Chains); Probabilistic Linguistics.
(12916 views)

by D. Koutsoyiannis - National Technical University of Athens
Contents: The utility of probability; Basic concepts of probability; Elementary statistical concepts; Special concepts of probability theory in geophysical applications; Typical univariate statistical analysis in geophysical processes; etc.
(6683 views)

by S.P. Meyn, R.L. Tweedie - Springer
The book on the theory of general state space Markov chains, and its application to time series analysis, operations research and systems and control theory. An advanced graduate text and a monograph treating the stability of Markov chains.
(21344 views)

by Martin Hairer - arXiv
This text is an attempt to give a reasonably self-contained presentation of the basic theory of stochastic partial differential equations, taking for granted basic measure theory, functional analysis and probability theory, but nothing else.
(13445 views)