Logo

Theory of Functions of a Real Variable

Large book cover: Theory of Functions of a Real Variable

Theory of Functions of a Real Variable
by


Number of pages: 393

Description:
I have taught the beginning graduate course in real variables and functional analysis three times in the last five years, and this book is the result. The course assumes that the student has seen the basics of real variable theory and point set topology. Contents: the topology of metric spaces, Hilbert spaces and compact operators, the Fourier transform, measure theory, the Lebesgue integral, the Daniell integral, Wiener measure, Brownian motion and white noise, Haar measure, Banach algebras and the spectral theorem, Stone’s theorem, scattering theory.

Home page url

Download or read it online for free here:
Download link
(1.5MB, PDF)

Similar books

Book cover: Analysis Tools with ApplicationsAnalysis Tools with Applications
by - Springer
These are lecture notes from Real analysis and PDE: Basic Topological, Metric and Banach Space Notions; Riemann Integral and ODE; Lebesbgue Integration; Hilbert Spaces and Spectral Theory of Compact Operators; Complex Variable Theory; etc.
(8176 views)
Book cover: Basic Real AnalysisBasic Real Analysis
by - Birkhäuser
A comprehensive treatment with a global view of the subject, emphasizing connections between real analysis and other branches of mathematics. Included throughout are many examples and hundreds of problems, with hints or complete solutions for most.
(895 views)
Book cover: Differential CalculusDifferential Calculus
by - Université Paris VI
The notes provide a short presentation of the main concepts of differential calculus. Our point of view is the abstract setting of a real normed space, and when necessary to specialize to the case of a finite dimensional space endowed with a basis.
(3202 views)
Book cover: Applied AnalysisApplied Analysis
by - World Scientific Publishing Company
Introduces applied analysis at the graduate level, particularly those parts of analysis useful in graduate applications. Only a background in basic calculus, linear algebra and ordinary differential equations, and functions and sets is required.
(8106 views)