**Analysis Tools with Applications**

by Bruce K. Driver

**Publisher**: Springer 2003**Number of pages**: 790

**Description**:

These are lecture notes from Real analysis and PDE. Contents: Basic Topological, Metric and Banach Space Notions; The Riemann Integral and Ordinary Differential Equations; Lebesbgue Integration Theory; Hilbert Spaces and Spectral Theory of Compact Operators; Synthesis of Integral and Differential Calculus; Miracle Properties of Banach Spaces; Complex Variable Theory; The Fourier Transform; Generalized Functions; PDE Examples; First Order Scalar Equations Elliptic ODE; Constant Coefficient Equations; Sobolev Theory; Variable Coefficient Equations; Heat Kernel Properties; Heat Kernels on Vector Bundles; PDE Extras.

Download or read it online for free here:

**Download link**

(4.7MB, PDF)

## Similar books

**Traveling Wave Solutions of Parabolic Systems**

by

**A. Volpert, V. Volpert, V. Volpert**-

**American Mathematical Society**

The theory of traveling waves described by parabolic equations and systems is a rapidly developing branch of modern mathematics. This book presents a general picture of current results about wave solutions of parabolic systems and their stability.

(

**11732**views)

**Lectures on Exterior Differential Systems**

by

**M. Kuranishi**-

**Tata Institute of Fundamental Research**

Contents: Parametrization of sets of integral submanifolds (Regular linear maps, Germs of submanifolds of a manifold); Exterior differential systems (Differential systems with independent variables); Prolongation of Exterior Differential Systems.

(

**7919**views)

**Introduction to Differential Equations**

by

**Jeffrey R. Chasnov**-

**The Hong Kong University of Science &Technology**

Contents: A short mathematical review; Introduction to odes; First-order odes; Second-order odes, constant coefficients; The Laplace transform; Series solutions; Systems of equations; Bifurcation theory; Partial differential equations.

(

**14299**views)

**Techniques of Applied Mathematics**

by

**Andrew Fowler**-

**University of Oxford**

This course develops mathematical techniques which are useful in solving 'real-world' problems involving differential equations. The course embraces the ethos of mathematical modelling, and aims to show in a practical way how equations 'work'.

(

**8273**views)