**Analysis Tools with Applications**

by Bruce K. Driver

**Publisher**: Springer 2003**Number of pages**: 790

**Description**:

These are lecture notes from Real analysis and PDE. Contents: Basic Topological, Metric and Banach Space Notions; The Riemann Integral and Ordinary Differential Equations; Lebesbgue Integration Theory; Hilbert Spaces and Spectral Theory of Compact Operators; Synthesis of Integral and Differential Calculus; Miracle Properties of Banach Spaces; Complex Variable Theory; The Fourier Transform; Generalized Functions; PDE Examples; First Order Scalar Equations Elliptic ODE; Constant Coefficient Equations; Sobolev Theory; Variable Coefficient Equations; Heat Kernel Properties; Heat Kernels on Vector Bundles; PDE Extras.

Download or read it online for free here:

**Download link**

(4.7MB, PDF)

## Similar books

**Notes on Diffy Qs: Differential Equations for Engineers**

by

**Jiří Lebl**-

**Lulu.com**

One semester introductory course on differential equations aimed at engineers. The book covers first order ODEs, higher order linear ODEs, systems of ODEs, Fourier series and PDEs, eigenvalue problems, and the Laplace transform.

(

**33734**views)

**Mathematical Physics II**

by

**Boris Dubrovin**-

**SISSA**

These are lecture notes on various topics in analytic theory of differential equations: Singular points of solutions to analytic differential equations; Monodromy of linear differential operators with rational coefficients.

(

**10854**views)

**Computational Mathematics for Differential Equations**

by

**N. V. Kopchenova, I. A. Maron**

This is a manual on solving problems in computational mathematics. The book is intended primarily for engineering students, but may also prove useful for economics students, graduate engineers, and postgraduate students in the applied sciences.

(

**11952**views)

**Beyond partial differential equations: A course on linear and quasi-linear abstract hyperbolic evolution equations**

by

**Horst R. Beyer**-

**arXiv**

This course introduces the use of semigroup methods in the solution of linear and nonlinear (quasi-linear) hyperbolic partial differential equations, with particular application to wave equations and Hermitian hyperbolic systems.

(

**7905**views)