Logo

Principles of Data Analysis

Small book cover: Principles of Data Analysis

Principles of Data Analysis
by

Publisher: Prasenjit Saha
ISBN/ASIN: 1902918118
Number of pages: 113

Description:
This is a short book about the principles of data analysis. The emphasis is on why things are done rather than on exactly how to do them. If you already know something about the subject, then working through this book will probably deepen your understanding.

Home page url

Download or read it online for free here:
Download link
(750KB, PDF)

Similar books

Book cover: Probability and Statistics for Geophysical ProcessesProbability and Statistics for Geophysical Processes
by - National Technical University of Athens
Contents: The utility of probability; Basic concepts of probability; Elementary statistical concepts; Special concepts of probability theory in geophysical applications; Typical univariate statistical analysis in geophysical processes; etc.
(1326 views)
Book cover: Bayesian Spectrum Analysis and Parameter EstimationBayesian Spectrum Analysis and Parameter Estimation
by - Springer
This work is a research document on the application of probability theory to the parameter estimation problem. The people who will be interested in this material are physicists, economists, and engineers who have to deal with data on a daily basis.
(11298 views)
Book cover: Lectures on Noise Sensitivity and PercolationLectures on Noise Sensitivity and Percolation
by - arXiv
The goal of this set of lectures is to combine two seemingly unrelated topics: (1) The study of Boolean functions, a field particularly active in computer science; (2) Some models in statistical physics, mostly percolation.
(6595 views)
Book cover: Introduction to Probability Theory and Statistics for LinguisticsIntroduction to Probability Theory and Statistics for Linguistics
by - UCLA
Contents: Basic Probability Theory (Conditional Probability, Random Variables, Limit Theorems); Elements of Statistics (Estimators, Tests, Distributions, Correlation and Covariance, Linear Regression, Markov Chains); Probabilistic Linguistics.
(7041 views)