Logo

Gravitational Waves, Sources, and Detectors

Small book cover: Gravitational Waves, Sources, and Detectors

Gravitational Waves, Sources, and Detectors
by

Publisher: arXiv
Number of pages: 82

Description:
Notes of lectures for graduate students that were given at Lake Como in 1999, covering the theory of linearized gravitational waves, their sources, and the prospects at the time for detecting gravitational waves. The lectures remain of interest for pedagogical reasons, and in particular because they contain a treatment of current-quadrupole gravitational radiation that is not readily available in other sources.

Home page url

Download or read it online for free here:
Download link
(880KB, PDF)

Similar books

Book cover: Introduction to relativistic astrophysics and cosmology through MapleIntroduction to relativistic astrophysics and cosmology through Maple
by - arXiv
The author presents the pedagogical introduction to relativistic astrophysics and cosmology, which is based on computational and graphical resources of Maple 6. The knowledge of basics of general relativity and differential geometry is supposed.
(11537 views)
Book cover: Vector Analysis and the Theory of RelativityVector Analysis and the Theory of Relativity
by - Johns Hopkins press
This monograph is the outcome of lectures delivered to the graduate department of mathematics of The Johns Hopkins University. Considerations of space have made it somewhat condensed in form, but the mode of presentation is sufficiently novel.
(10160 views)
Book cover: An Advanced Course in General RelativityAn Advanced Course in General Relativity
by - University of Guelph
These lecture notes are suitable for a one-semester course at the graduate level. Table of contents: Fundamentals; Geodesic congruences; hypersurfaces; Lagrangian and Hamiltonian formulations of general relativity; Black holes.
(6978 views)
Book cover: Lecture Notes on General RelativityLecture Notes on General Relativity
by - Universitaet Bern
The first half of the book is dedicated to developing the machinery of tensor calculus and Riemannian geometry required to describe physics in a curved space time. We will then turn to various applications of General Relativity.
(8462 views)