Logo

Introduction to the theory of stochastic processes and Brownian motion problems

Small book cover: Introduction to the theory of stochastic processes and Brownian motion problems

Introduction to the theory of stochastic processes and Brownian motion problems
by

Publisher: arXiv
Number of pages: 104

Description:
Contents: Historical introduction; Stochastic variables; Stochastic processes and Markov processes; The master equation: Kramers–Moyal expansion and Fokker–Planck equation; The Langevin equation; Linear response theory, dynamical susceptibilities, and relaxation times (Kramers’ theory); Methods for solving Langevin and Fokker–Planck equations; Derivation of Langevin equations in the bath-of-oscillators formalism.

Home page url

Download or read it online for free here:
Download link
(1.2MB, PDF)

Similar books

Book cover: Introduction to the Field Theory of Classical and Quantum Phase TransitionsIntroduction to the Field Theory of Classical and Quantum Phase Transitions
by - arXiv
These notes provide a self-contained introduction to field theoretic methods employed in the study of classical and quantum phase transitions. Classical phase transitions occur at a regime where quantum fluctuations do not play an important role.
(6124 views)
Book cover: Statistical PhysicsStatistical Physics
by - University of Vienna
This web tutorial was devised as a tool for teaching Statistical Physics to second year students. Topics covered: Why is water wet? Elements of Kinetic Theory; Phase space; Statistical Thermodynamics; Statistical Quantum Mechanics.
(6991 views)
Book cover: Lectures on Noise Sensitivity and PercolationLectures on Noise Sensitivity and Percolation
by - arXiv
The goal of this set of lectures is to combine two seemingly unrelated topics: (1) The study of Boolean functions, a field particularly active in computer science; (2) Some models in statistical physics, mostly percolation.
(8360 views)
Book cover: Statistical Mechanics of ParticlesStatistical Mechanics of Particles
by - MIT
Basic principles are examined: the laws of thermodynamics and the concepts of temperature, work, heat, and entropy. Postulates of classical statistical mechanics, microcanonical, canonical, and grand canonical distributions; lattice vibrations; etc.
(4755 views)