Logo

Operator Algebras and Quantum Statistical Mechanics

Large book cover: Operator Algebras and Quantum Statistical Mechanics

Operator Algebras and Quantum Statistical Mechanics
by

Publisher: Springer
ISBN/ASIN: 3540170936
ISBN-13: 9783540170938
Number of pages: 505

Description:
These two volumes present the theory of operator algebras with applications to quantum statistical mechanics. The authors' approach to the operator theory is to a large extent governed by the dictates of the physical applications. The book is self-contained and most proofs are presented in detail, which makes it a useful text for students with a knowledge of basic functional analysis.

Download or read it online for free here:
Read online
(online preview)

Similar books

Book cover: Spectral TheorySpectral Theory
by - BookBoon
Spectral Theory - Functional Analysis Examples. Contents: Spectrum and resolvent; The adjoint of a bounded operator; Self adjoint operator; Isometric operators; Unitary and normal operators; Positive operators and projections; Compact operators.
(7726 views)
Book cover: Nonlinear Functional AnalysisNonlinear Functional Analysis
by - University of Vienna
This manuscript provides a brief introduction to nonlinear functional analysis. As an application we consider partial differential equations and prove existence and uniqueness for solutions of the stationary Navier-Stokes equation.
(8941 views)
Book cover: Functors and Categories of Banach SpacesFunctors and Categories of Banach Spaces
by - Springer
The aim of this book is to develop the theory of Banach operator ideals and metric tensor products along categorical lines: these two classes of mathematical objects are endofunctors on the category Ban of all Banach spaces in a natural way.
(5491 views)
Book cover: Lectures On Some Fixed Point Theorems Of Functional AnalysisLectures On Some Fixed Point Theorems Of Functional Analysis
by - Tata Institute Of Fundamental Research
The book is concerned with the application of a variety of methods to both non-linear (fixed point) problems and linear (eigenvalue) problems in infinite dimensional spaces. Author was interested in the construction of eigenvectors and eigenvalues.
(5535 views)