Operator Algebras and Quantum Statistical Mechanics

Operator Algebras and Quantum Statistical Mechanics

Operator Algebras and Quantum Statistical Mechanics
by Ola Bratteli, Derek W. Robinson

Publisher: Springer 2003
ISBN/ASIN: 3540170936
ISBN-13: 9783540170938
Number of pages: 505

Description:
These two volumes present the theory of operator algebras with applications to quantum statistical mechanics. The authors' approach to the operator theory is to a large extent governed by the dictates of the physical applications. The book is self-contained and most proofs are presented in detail, which makes it a useful text for students with a knowledge of basic functional analysis.

Download or read it online here:
Read online
(online preview)

Similar books

Functional AnalysisFunctional Analysis
by Alexander C. R. Belton - Lancaster University
These lecture notes are an expanded version of a set written for a course given to final-year undergraduates at the University of Oxford. A thorough understanding of Banach and Hilbert spaces is a prerequisite for this material.
(6239 views)
Global Analysis: Functional Analysis ExamplesGlobal Analysis: Functional Analysis Examples
by Leif Mejlbro - BookBoon
From the table of contents: Metric spaces; Topology; Continuous mappings; Sequences; Semi-continuity; Connected sets, differentiation; Normed vector spaces and integral operators; Differentiable mappings; Complete metric spaces; and more.
(7019 views)
C*-algebrasC*-algebras
by John Erdos - King's College, London
These notes form an introductory account of C*-algebras. Some results on more general commutative Banach algebras, whose proofs require little extra effort, are included. There are accounts of two applications of the commutative theory ...
(4315 views)
Distribution Theory (Generalized Functions)Distribution Theory (Generalized Functions)
by Ivan F Wilde
From the table of contents: Introduction; The spaces S and S'; The spaces D and D'; The Fourier transform; Convolution; Fourier-Laplace Transform; Structure Theorem for Distributions; Partial Differential Equations; and more.
(5215 views)