Logo

Introduction to Bimatrices by W. B. V. Kandasamy, F. Smarandache, K. Ilanthenral

Large book cover: Introduction to Bimatrices

Introduction to Bimatrices
by

Publisher: arXiv
ISBN/ASIN: 1931233950
ISBN-13: 9781931233958
Number of pages: 181

Description:
This book introduces the concept of bimatrices, and studies several notions like bieigen values, bieigen vectors, characteristic bipolynomials, bitransformations, bioperators and bidiagonalization. Further, we introduce and explore the concepts like fuzzy bimatrices, neutrosophic bimatrices and fuzzy neutrosophic bimatrices, which will find its application in fuzzy and neutrosophic logic.

Home page url

Download or read it online for free here:
Download link
(610KB, PDF)

Similar books

Book cover: The Theory of MatricesThe Theory of Matrices
by - Chelsea
A concise overview of matrix algebra's many applications, discussing topics such as reviews of matrices, arrays, and determinants; the characteristic equation; associated integral matrices; equivalence, congruence, and similarity; etc.
(6611 views)
Book cover: Toeplitz and Circulant Matrices: A reviewToeplitz and Circulant Matrices: A review
by - Now Publishers Inc
The book derives the fundamental theorems on the asymptotic behavior of eigenvalues, inverses, and products of banded Toeplitz matrices and Toeplitz matrices with absolutely summable elements. Written for students and practicing engineers.
(9794 views)
Book cover: Natural Product Xn on matricesNatural Product Xn on matrices
by - arXiv
The authors introduce a new type of product on matrices called the natural product Xn - an extension of product in the case or row matrices of the same order. When two matrices of same order can be added, nothing prevents one from multiplying them.
(4780 views)
Book cover: Determinants and MatricesDeterminants and Matrices
by - Teubner
Basic methods and concepts are introduced. From the table of contents: Preliminaries; Determinants; Matrices; Vector spaces. Rank of a matrix; Linear Spaces; Hermitian/Quadratic forms; More about determinants and matrices; Similarity.
(8439 views)