Logo

Introduction to Bimatrices by W. B. V. Kandasamy, F. Smarandache, K. Ilanthenral

Large book cover: Introduction to Bimatrices

Introduction to Bimatrices
by

Publisher: arXiv
ISBN/ASIN: 1931233950
ISBN-13: 9781931233958
Number of pages: 181

Description:
This book introduces the concept of bimatrices, and studies several notions like bieigen values, bieigen vectors, characteristic bipolynomials, bitransformations, bioperators and bidiagonalization. Further, we introduce and explore the concepts like fuzzy bimatrices, neutrosophic bimatrices and fuzzy neutrosophic bimatrices, which will find its application in fuzzy and neutrosophic logic.

Home page url

Download or read it online for free here:
Download link
(610KB, PDF)

Similar books

Book cover: Introduction to Matrix AlgebraIntroduction to Matrix Algebra
by - University of South Florida
This book is written primarily for students who are at freshman level or do not take a full course in Linear/Matrix Algebra, or wanting a contemporary and applied approach to Matrix Algebra. Eight chapters of the book are available for free.
(11986 views)
Book cover: Natural Product Xn on matricesNatural Product Xn on matrices
by - arXiv
The authors introduce a new type of product on matrices called the natural product Xn - an extension of product in the case or row matrices of the same order. When two matrices of same order can be added, nothing prevents one from multiplying them.
(6190 views)
Book cover: Matrix Analysis and AlgorithmsMatrix Analysis and Algorithms
by - CaltechAUTHORS
An introduction to matrix analysis, and to the basic algorithms of numerical linear algebra. Contents: Vector and Matrix Analysis; Matrix Factorisations; Stability and Conditioning; Complexity of Algorithms; Systems of Linear Equations; etc.
(1948 views)
Book cover: CirculantsCirculants
by
The goal of this book is to describe circulants in an algebraic context. It oscillates between the point of view of circulants as a commutative algebra, and the concrete point of view of circulants as matrices with emphasis on their determinants.
(9767 views)