**Matrix Analysis**

by Steven J Cox

**Publisher**: Rice University 2012**Number of pages**: 98

**Description**:

Under the influence of Bellman and Kalman engineers and scientists have found in matrix theory a language for representing and analyzing multivariable systems. Our goal in these notes is to demonstrate the role of matrices in the modeling of physical systems and the power of matrix theory in the analysis and synthesis of such systems.

Download or read it online for free here:

**Download link**

(1.1MB, PDF)

## Similar books

**Matrix Algebra**

by

**Marco Taboga**-

**StatLect**

This is a collection of 98 short and self-contained lectures on the most important topics in linear algebra. There are hundreds of examples, solved exercises and detailed derivations. The step-by-step approach makes the book easy to understand.

(

**5307**views)

**Introduction to Bimatrices**

by

**W. B. V. Kandasamy, F. Smarandache, K. Ilanthenral**-

**arXiv**

This book introduces the concept of bimatrices, and studies several notions like bieigen values, bieigen vectors, characteristic bipolynomials, bitransformations, bioperators and bidiagonalization. The concepts of fuzzy bimatrices is introduced.

(

**13207**views)

**Circulants**

by

**Alun Wyn-jones**

The goal of this book is to describe circulants in an algebraic context. It oscillates between the point of view of circulants as a commutative algebra, and the concrete point of view of circulants as matrices with emphasis on their determinants.

(

**15167**views)

**Random Matrix Theory, Interacting Particle Systems and Integrable Systems**

by

**Percy Deift, Peter Forrester (eds)**-

**Cambridge University Press**

Random matrix theory is at the intersection of linear algebra, probability theory and integrable systems, and has a wide range of applications. The book contains articles on random matrix theory such as integrability and free probability theory.

(

**5863**views)