Logo

An Introduction to Algebraic Surgery

Small book cover: An Introduction to Algebraic Surgery

An Introduction to Algebraic Surgery
by

Publisher: arXiv
Number of pages: 82

Description:
Browder-Novikov-Sullivan-Wall surgery theory investigates the homotopy types of manifolds, using a combination of algebra and topology. It is the aim of these notes to provide an introduction to the more algebraic aspects of the theory (such as the Wall surgery obstruction groups), without losing sight of the geometric motivation.

Home page url

Download or read it online for free here:
Download link
(550KB, PDF)

Similar books

Book cover: E 'Infinite' Ring Spaces and E 'Infinite' Ring SpectraE 'Infinite' Ring Spaces and E 'Infinite' Ring Spectra
by - Springer
The theme of this book is infinite loop space theory and its multiplicative elaboration. The main goal is a complete analysis of the relationship between the classifying spaces of geometric topology and the infinite loop spaces of algebraic K-theory.
(11843 views)
Book cover: Introduction to Characteritic Classes and Index TheoryIntroduction to Characteritic Classes and Index Theory
by - Universidade de Lisboa
This text deals with characteristic classes of real and complex vector bundles and Hirzebruch-Riemann-Roch formula. We will present a few basic but fundamental facts which should help the reader to gain a good idea of the mathematics involved.
(10030 views)
Book cover: Introduction to Topological GroupsIntroduction to Topological Groups
by - UCM
These notes provide a brief introduction to topological groups with a special emphasis on Pontryaginvan Kampen's duality theorem for locally compact abelian groups. We give a completely self-contained elementary proof of the theorem.
(10221 views)
Book cover: Prerequisites in Algebraic TopologyPrerequisites in Algebraic Topology
by - NTNU
This is not an introductory textbook in algebraic topology, these notes attempt to give an overview of the parts of algebraic topology, and in particular homotopy theory, which are needed in order to appreciate that side of motivic homotopy theory.
(11074 views)