Logo

The Geometry of Iterated Loop Spaces

Large book cover: The Geometry of Iterated Loop Spaces

The Geometry of Iterated Loop Spaces
by

Publisher: Springer
ISBN/ASIN: 3540059040
ISBN-13: 9783540059042
Number of pages: 175

Description:
This is the first of a series of papers devoted to the study of iterated loop spaces. Our goal is to develop a simple and coherent theory which encompasses most of the known results about such spaces. We begin with some history and a description of the desiderata of such a theory.

Home page url

Download or read it online for free here:
Download link
(4.8MB, PDF)

Similar books

Book cover: Notes on the course Algebraic TopologyNotes on the course Algebraic Topology
by - University of Oregon
Contents: Important examples of topological spaces; Constructions; Homotopy and homotopy equivalence; CW-complexes and homotopy; Fundamental group; Covering spaces; Higher homotopy groups; Fiber bundles; Suspension Theorem and Whitehead product; etc.
(5320 views)
Book cover: H Ring Spectra and Their ApplicationsH Ring Spectra and Their Applications
by - Springer
This volume concerns spectra with enriched multiplicative structure. It is a truism that interesting cohomology theories are represented by ring spectra, the product on the spectrum giving rise to the cup products in the theory.
(5271 views)
Book cover: E 'Infinite' Ring Spaces and E 'Infinite' Ring SpectraE 'Infinite' Ring Spaces and E 'Infinite' Ring Spectra
by - Springer
The theme of this book is infinite loop space theory and its multiplicative elaboration. The main goal is a complete analysis of the relationship between the classifying spaces of geometric topology and the infinite loop spaces of algebraic K-theory.
(7410 views)
Book cover: An Elementary Illustrated Introduction to Simplicial SetsAn Elementary Illustrated Introduction to Simplicial Sets
by - arXiv.org
This is an introduction to simplicial sets and simplicial homotopy theory with a focus on the combinatorial aspects of the theory and their geometric/topological origins. Accessible to students familiar with the fundamentals of algebraic topology.
(3574 views)