Logo

Frobenius Splittings and B-Modules

Large book cover: Frobenius Splittings and B-Modules

Frobenius Splittings and B-Modules
by

Publisher: Springer
ISBN/ASIN: B001B1EJ4K
Number of pages: 112

Description:
The course given by the author at the Tata Institute in 1992 explains the solution by O. Mathieu of some conjectures in the representation theory of arbitrary semisimple algebraic groups. The conjectures concern filtrations of 'standard' representations; while Demazure studied the representations by means of a particular resolution of singularities of Schubert varieties, the method of Mathieu involves sheaf cohomology and 'Frobenius splittings' on a Demazure resolution in finite characteristic p.

Download or read it online for free here:
Download link
(5.1MB, PDF)

Similar books

Book cover: Combinatorial Group TheoryCombinatorial Group Theory
by - University of Melbourne
Lecture notes for the subject Combinatorial Group Theory at the University of Melbourne. Contents: About groups; Free groups and presentations; Construction of new groups; Properties, embeddings and examples; Subgroup Theory; Decision Problems.
(12449 views)
Book cover: Group TheoryGroup Theory
by
Contents: Basic Definitions and Results; Free Groups and Presentations; Coxeter Groups; Automorphisms and Extensions; Groups Acting on Sets; The Sylow Theorems; Subnormal Series; Solvable and Nilpotent Groups; Representations of Finite Groups.
(11302 views)
Book cover: Group Theory: Birdtracks, Lie's, and Exceptional GroupsGroup Theory: Birdtracks, Lie's, and Exceptional Groups
by - Princeton University Press
A book on the theory of Lie groups for researchers and graduate students in theoretical physics and mathematics. It answers what Lie groups preserve trilinear, quadrilinear, and higher order invariants. Written in a lively and personable style.
(13022 views)
Book cover: Why are Braids Orderable?Why are Braids Orderable?
by
This book is an account of several quite different approaches to Artin's braid groups, involving self-distributive algebra, uniform finite trees, combinatorial group theory, mapping class groups, laminations, and hyperbolic geometry.
(10207 views)