Frobenius Splittings and B-Modules
by Wilberd van der Kallen
Publisher: Springer 1993
ISBN/ASIN: B001B1EJ4K
Number of pages: 112
Description:
The course given by the author at the Tata Institute in 1992 explains the solution by O. Mathieu of some conjectures in the representation theory of arbitrary semisimple algebraic groups. The conjectures concern filtrations of 'standard' representations; while Demazure studied the representations by means of a particular resolution of singularities of Schubert varieties, the method of Mathieu involves sheaf cohomology and 'Frobenius splittings' on a Demazure resolution in finite characteristic p.
Download or read it online for free here:
Download link
(5.1MB, PDF)
Similar books
An Elementary Introduction to Group Theoryby M. E. Charkani - AMS
The theory of groups is a branch of mathematics in which we study the concept of binaryoperations. Group theory has many applications in physics and chemistry, and is potentially applicable in any situation characterized by symmetry.
(9092 views)
Groups and Semigroups: Connections and Contrastsby John Meakin - University of Nebraska-Lincoln
In the present paper, I will discuss some of these connections between group theory and semigroup theory, and I will also discuss some rather surprising contrasts between the theories. I will focus primarily on the theory of inverse semigroups.
(10944 views)
Lectures on Algebraic Groupsby Alexander Kleshchev - University of Oregon
Contents: General Algebra; Commutative Algebra; Affine and Projective Algebraic Sets; Varieties; Morphisms; Tangent spaces; Complete Varieties; Basic Concepts; Lie algebra of an algebraic group; Quotients; Semisimple and unipotent elements; etc.
(14779 views)
Lie groups and Lie algebrasby N. Reshetikhin, V. Serganova, R. Borcherds - UC Berkeley
From the table of contents: Tangent Lie algebras to Lie groups; Simply Connected Lie Groups; Hopf Algebras; PBW Theorem and Deformations; Lie algebra cohomology; Engel's Theorem and Lie's Theorem; Cartan Criterion, Whitehead and Weyl Theorems; etc.
(13565 views)