Logo

Introduction to Mathematical Logic: A problem solving course

Small book cover: Introduction to Mathematical Logic: A problem solving course

Introduction to Mathematical Logic: A problem solving course
by

Publisher: arXiv
Number of pages: 75

Description:
This is a set of 288 questions written for a Moore-style course in Mathematical Logic. Topics covered are: propositional logic; axioms of ZFC; wellorderings and equivalents of AC; ordinal and cardinal arithmetic; first order logic, and the compactness theorem; Lowenheim-Skolem theorems; Turing machines, Church's Thesis; completeness theorem and first incompleteness theorem; undecidable theories; second incompleteness theorem.

Home page url

Download or read it online for free here:
Download link
(430KB, PDF)

Similar books

Book cover: Predicative ArithmeticPredicative Arithmetic
by - Princeton Univ Pr
The book based on lecture notes of a course given at Princeton University in 1980. From the contents: the impredicativity of induction, the axioms of arithmetic, order, induction by relativization, the bounded least number principle, and more.
(12370 views)
Book cover: A Friendly Introduction to Mathematical LogicA Friendly Introduction to Mathematical Logic
by - Milne Library Publishing
In this book, readers with no previous study in the field are introduced to the basics of model theory, proof theory, and computability theory. The text is designed to be used either in an upper division undergraduate classroom, or for self study.
(2650 views)
Book cover: The Principles Of MathematicsThe Principles Of Mathematics
by - W. W. Norton & Company
Russell's classic sets forth his landmark thesis that mathematics and logic are identical -- that what is called mathematics is simply later deductions from logical premises. His ideas have had a profound influence on the foundations of mathematics.
(7860 views)
Book cover: Algebraic LogicAlgebraic Logic
by
Part I of the book studies algebras which are relevant to logic. Part II deals with the methodology of solving logic problems by (i) translating them to algebra, (ii) solving the algebraic problem, and (iii) translating the result back to logic.
(11389 views)