Logo

Infinite-dimensional Lie Algebras

Small book cover: Infinite-dimensional Lie Algebras

Infinite-dimensional Lie Algebras
by

Publisher: University of Edinburgh
Number of pages: 55

Description:
Contents: Central extensions; The Virasoro algebra; The Heisenberg algebra; Enveloping algebras; A little infinite-dimensional surprise; Hands-on loop and affine algebras; Simple Lie algebras; Kac-Moody Lie algebras; Classification of generalised Cartanmatrices; Dynkin diagrams; Forms, Weyl groups and roots; Root spaces; Affine Lie algebras and Kac-Moody Lie algebras; etc.

Home page url

Download or read it online for free here:
Download link
(780KB, PDF)

Similar books

Book cover: Universal Algebra for Computer ScienceUniversal Algebra for Computer Science
by - Wagner Mathematics
A text on universal algebra with a strong emphasis on applications and examples from computer science. The text introduces signatures, algebras, homomorphisms, initial algebras, free algebras, and illustrates them with interactive applications.
(15513 views)
Book cover: An introduction to Noncommutative Projective GeometryAn introduction to Noncommutative Projective Geometry
by - arXiv
These lecture notes are an expanded version of the author's lectures at a graduate workshop. The main topics discussed are Artin-Schelter regular algebras, point modules, and the noncommutative projective scheme associated to a graded algebra.
(9402 views)
Book cover: Lectures on Quadratic FormsLectures on Quadratic Forms
by - Tata Institute of Fundamental Research
From the table of contents: Vector groups and linear inequalities (Vector groups, Lattices, Characters, Diophantine approximations); Reduction of positive quadratic forms; Indefinite quadratic forms; Analytic theory of Indefinite quadratic forms.
(10992 views)
Book cover: An Invitation to General Algebra and Universal ConstructionsAn Invitation to General Algebra and Universal Constructions
by - Henry Helson
From the contents: Free groups; Ordered sets, induction, and the Axiom of Choice; Lattices, closure operators, and Galois connections; Categories and functors; Universal constructions in category-theoretic terms; Varieties of algebras; etc.
(13891 views)