**Set Theoretic Approach to Algebraic Structures in Mathematics**

by W. B. Vasantha Kandasamy, Florentin Smarandache

**Publisher**: Educational Publisher 2013**ISBN/ASIN**: B00CABFS1S**Number of pages**: 168

**Description**:

This book brings out how sets in algebraic structures can be used to construct the most generalized algebraic structures, like set linear algebra / vector space, set ideals in groups and rings and semigroups, and topological set vector spaces. This sort of study is innovative and will find applications in data handling.

Download or read it online for free here:

**Download link**

(2.3MB, PDF)

## Similar books

**Smarandache Semirings, Semifields and Semivector Spaces**

by

**W. B. Vasantha Kandasamy**-

**American Research Press**

This is the first book on the Smarandache algebraic structures that have two binary operations. Semirings are algebraic structures with two binary operations enjoying several properties and it is the most generalized structure.

(

**9403**views)

**An introduction to Noncommutative Projective Geometry**

by

**D. Rogalski**-

**arXiv**

These lecture notes are an expanded version of the author's lectures at a graduate workshop. The main topics discussed are Artin-Schelter regular algebras, point modules, and the noncommutative projective scheme associated to a graded algebra.

(

**5906**views)

**The Octonions**

by

**John C. Baez**-

**University of California**

The octonions are the largest of the four normed division algebras. The author describes them and their relation to Clifford algebras and spinors, Bott periodicity, projective and Lorentzian geometry, Jordan algebras, and the exceptional Lie groups.

(

**15414**views)

**Hopf Algebras in General and in Combinatorial Physics: a practical introduction**

by

**G.H.E. Duchamp, et al.**-

**arXiv**

This tutorial is intended to give an accessible introduction to Hopf algebras. The mathematical context is that of representation theory, and we also illustrate the structures with examples taken from combinatorics and quantum physics.

(

**6338**views)