Logo

Introduction to Representation Theory

Small book cover: Introduction to Representation Theory

Introduction to Representation Theory
by

Publisher: University of Toronto
Number of pages: 73

Description:
Contents: Representation Theory of Groups - Algebraic Foundations; Representations of Finite Groups; Representations of SL2(Fq); Representations of Finite Groups of Lie Type; Topological Groups, Representations, and Haar Measure; Representations of Compact Groups.

Home page url

Download or read it online for free here:
Download link
(460KB, PDF)

Similar books

Book cover: Lectures on Some Aspects of p-Adic AnalysisLectures on Some Aspects of p-Adic Analysis
by - Tata Institute of Fundamental Research
The text covers the classical theory of valuated fields, results about representations of classical groups over a locally compact valuated field, and Dwork's proof of the rationality of the zeta function of an algebraic variety over a finite field.
(5711 views)
Book cover: Lectures on Representation Theory and Invariant TheoryLectures on Representation Theory and Invariant Theory
by - University of Leeds
These are lectures on the symmetric group, the general linear group and invariant theory. The course covered as much of the classical theory as time allowed. The text requires some knowledge of rings and modules, character theory, affine varieties.
(8882 views)
Book cover: Representation Theory of Compact GroupsRepresentation Theory of Compact Groups
by - Aalto TKK
Contents: Groups (Groups without topology, Group actions and representations); Topological groups (Compact groups, Haar measure, Fourier transforms on compact groups..); Linear Lie groups (Exponential map, Lie groups and Lie algebras); Hopf algebras.
(7858 views)
Book cover: Symplectic Reflection AlgebrasSymplectic Reflection Algebras
by - arXiv
The emphasis throughout is on examples to illustrate the many different facets of symplectic reflection algebras. Exercises are included at the end of each lecture in order for the student to get a better feel for these algebras.
(5117 views)