Logo

Introduction to Representation Theory

Small book cover: Introduction to Representation Theory

Introduction to Representation Theory
by

Publisher: University of Toronto
Number of pages: 73

Description:
Contents: Representation Theory of Groups - Algebraic Foundations; Representations of Finite Groups; Representations of SL2(Fq); Representations of Finite Groups of Lie Type; Topological Groups, Representations, and Haar Measure; Representations of Compact Groups.

Home page url

Download or read it online for free here:
Download link
(460KB, PDF)

Similar books

Book cover: An Elementary Introduction to Groups and RepresentationsAn Elementary Introduction to Groups and Representations
by - arXiv
An elementary introduction to Lie groups, Lie algebras, and their representations. Topics include definitions and examples of Lie groups and Lie algebras, the basics of representations theory, the Baker-Campbell-Hausdorff formula, and more.
(12620 views)
Book cover: Representation Theory of Compact GroupsRepresentation Theory of Compact Groups
by - Aalto TKK
Contents: Groups (Groups without topology, Group actions and representations); Topological groups (Compact groups, Haar measure, Fourier transforms on compact groups..); Linear Lie groups (Exponential map, Lie groups and Lie algebras); Hopf algebras.
(6091 views)
Book cover: Introduction to Representations of Real Semisimple Lie GroupsIntroduction to Representations of Real Semisimple Lie Groups
by - arXiv
These are lecture notes for a one semester introductory course I gave at Indiana University. The goal was to make this exposition as clear and elementary as possible. A particular emphasis is given on examples involving SU(1,1).
(2694 views)
Book cover: Finite Group Representations for the Pure MathematicianFinite Group Representations for the Pure Mathematician
by - University of Minnesota
The book is intended to be used as a learning tool by people who do not know the subject. It is intended to be appropriate for non-specialists in the area of representation theory, such as those whose primary interest is topology or combinatorics.
(5344 views)