Logo

Finite Rank Torsion Free Modules Over Dedekind Domains

Small book cover: Finite Rank Torsion Free Modules Over Dedekind Domains

Finite Rank Torsion Free Modules Over Dedekind Domains
by

Publisher: University of Hawaii

Description:
Contents: Modules Over Commutative Rings; Fundamentals; Rank-one Modules and Types; Quasi-Homomorphisms; The t-Socle and t-Radical; Butler Modules; Splitting Rings and Splitting Fields; Torsion Free Rings; Quotient Divisible Modules; Locally Free Modules; Near Isomorphism; Direct Sum Decompositions.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Elements of Group TheoryElements of Group Theory
by - arXiv
The following notes are the basis for a graduate course. They are oriented towards the application of group theory to particle physics, although some of it can be used for general quantum mechanics. They have no pretense of mathematical rigor.
(10278 views)
Book cover: An Elementary Introduction to Groups and RepresentationsAn Elementary Introduction to Groups and Representations
by - arXiv
An elementary introduction to Lie groups, Lie algebras, and their representations. Topics include definitions and examples of Lie groups and Lie algebras, the basics of representations theory, the Baker-Campbell-Hausdorff formula, and more.
(12744 views)
Book cover: Introduction to Arithmetic GroupsIntroduction to Arithmetic Groups
by - arXiv
This revised version of a book in progress on arithmetic groups and locally symmetric spaces contains several additional chapters, including the proofs of three major theorems of G. A. Margulis (superrigidity, arithmeticity, and normal subgroups).
(5785 views)
Book cover: Theory of Groups of Finite OrderTheory of Groups of Finite Order
by - Cambridge University Press
After introducing permutation notation and defining group, the author discusses the simpler properties of group that are independent of their modes of representation; composition-series of groups; isomorphism of a group with itself; etc.
(5200 views)