**Definitions, Solved and Unsolved Problems, Conjectures, and Theorems in Number Theory and Geometry**

by Florentin Smarandache

**Publisher**: Amer Research Pr 2000**ISBN/ASIN**: 187958574X**ISBN-13**: 9781879585744**Number of pages**: 84

**Description**:

A collection of definitions, questions, and theorems edited by M. L. Perez, such as Smarandache type conjectures, problems, numerical bases, T-numbers, progressions, series, functions, Non-Euclidean geometries, paradoxes (such as Smarandache Sorites Paradox that our visible world is composed by a totality of invisible particles), linguistic tautologies, Smarandache hypothesis that there is no speed barrier in the universe - which has been extended to SRM-theory.

Download or read it online for free here:

**Download link**

(2.7MB, PDF)

## Similar books

**The Chaos Hypertextbook**

by

**Glenn Elert**

This book is written for anyone with an interest in chaos, fractals, non-linear dynamics, or mathematics in general. It's a moderately heavy piece of work, requiring a bit of mathematical knowledge, but it is definitely not aimed at mathematicians.

(

**9017**views)

**Encyclopedia of Dynamical Systems**

by

**D. Anosov, at al.**-

**Scholarpedia**

The encyclopedia covers differential equations, numerical analysis, bifurcations, topological dynamics, ergodic theory, hyperbolic dynamics, oscillators, pattern formation, chaos, statistical mechanics, control theory, and applications.

(

**8288**views)

**Introduction to Dynamical Systems: A Hands-on Approach with Maxima**

by

**Jaime E. Villate**

In this book we explore some topics on dynamical systems, using an active teaching approach, supported by computing tools. The subject of this book on dynamical systems is at the borderline of physics, mathematics and computing.

(

**6008**views)

**Dynamical Systems: Analytical and Computational Techniques**

by

**Mahmut Reyhanoglu**-

**InTech**

There has been a considerable progress made during the recent past on mathematical techniques for studying dynamical systems. This progress is due to our increasing ability to mathematically model physical processes and to analyze and solve them.

(

**1470**views)