**Lectures on Representation Theory and Invariant Theory**

by William Crawley-Boevey

**Publisher**: University of Leeds 1990**Number of pages**: 77

**Description**:

These are the notes for a lecture course on the symmetric group, the general linear group and invariant theory. The aim of the course was to cover as much of the beautiful classical theory as time allowed. The result is a text which requires no previous knowledge beyond a smattering of rings and modules, character theory, and affine varieties.

Download or read it online for free here:

**Download link**

(240KB, PDF)

## Similar books

**Lectures on Representations of Complex Semi-Simple Lie Groups**

by

**Thomas J. Enright**-

**Tata Institute of Fundamental Research**

The purpose of these lectures is to describe a factorial correspondence between the theory of admissible representations for a complex semisimple Lie group and the theory of highest weight modules for a semisimple Lie algebra.

(

**7646**views)

**Representation Theory of Compact Groups**

by

**Michael Ruzhansky, Ville Turunen**-

**Aalto TKK**

Contents: Groups (Groups without topology, Group actions and representations); Topological groups (Compact groups, Haar measure, Fourier transforms on compact groups..); Linear Lie groups (Exponential map, Lie groups and Lie algebras); Hopf algebras.

(

**9755**views)

**Finite Group Representations for the Pure Mathematician**

by

**Peter Webb**-

**University of Minnesota**

The book is intended to be used as a learning tool by people who do not know the subject. It is intended to be appropriate for non-specialists in the area of representation theory, such as those whose primary interest is topology or combinatorics.

(

**8835**views)

**Varieties of Lattices**

by

**Peter Jipsen, Henry Rose**-

**Springer**

Presents the main results about modular and nonmodular varieties, equational bases and the amalgamation property in a uniform way. The text includes preliminaries that make the material accessible to anyone with basic knowledge of universal algebra.

(

**10682**views)