**Comments and topics on Smarandache notions and problems**

by Kenichiro Kashihara

**Publisher**: Erhus University Press 1996**ISBN/ASIN**: 1879585553**ISBN-13**: 9781879585553**Number of pages**: 50

**Description**:

This book starts with an examination of some of the problems posed by Florentin Smarandache, one of the foremost mathematicians in the world today. The problems are from many different areas, such as sequences, primes and other aspects of number theory. Some of the problems are solved in the book, although in many cases the author raises additional questions. The second part of the book deals with a function created by the author and given the name the Pseudo Smarandache function.

Download or read it online for free here:

**Download link**

(1.4MB, PDF)

## Similar books

**Topics in the Theory of Quadratic Residues**

by

**Steve Wright**-

**arXiv**

Beginning with Gauss, the study of quadratic residues and nonresidues has subsequently led directly to many of the ideas and techniques that are used everywhere in number theory today, and the primary goal of these lectures is to use this study ...

(

**2811**views)

**Algorithms for Modular Elliptic Curves**

by

**J. E. Cremona**-

**Cambridge University Press**

The author describes the construction of modular elliptic curves giving an algorithm for their computation. Then algorithms for the arithmetic of elliptic curves are presented. Finally, the results of the implementations of the algorithms are given.

(

**10216**views)

**Geometric Theorems and Arithmetic Functions**

by

**Jozsef Sandor**-

**American Research Press**

Contents: on Smarandache's Podaire theorem, Diophantine equation, the least common multiple of the first positive integers, limits related to prime numbers, a generalized bisector theorem, values of arithmetical functions and factorials, and more.

(

**11657**views)

**Lectures On Irregularities Of Distribution**

by

**Wolfgang M. Schmidt**-

**Tata Institute of Fundamental Research**

The theory of Irregularities of Distribution began as a branch of Uniform Distributions, but is of independent interest. In these lectures the author restricted himself to distribution problems with a geometric interpretation.

(

**4425**views)