Logo

Notes on Fermionic Fock Space for Number Theorists

Small book cover: Notes on Fermionic Fock Space for Number Theorists

Notes on Fermionic Fock Space for Number Theorists
by

Publisher: The University of Arizona
Number of pages: 99

Description:
This is a compilation of exercises, worked examples and key references (along with provocative remarks) that the author compiled in order to help readers learn their way around fermionic Fock space. The notebook is suitable for use by second year graduate students with an interest in number theory.

Home page url

Download or read it online for free here:
Download link
(multiple formats)

Similar books

Book cover: Geometric Theorems and Arithmetic FunctionsGeometric Theorems and Arithmetic Functions
by - American Research Press
Contents: on Smarandache's Podaire theorem, Diophantine equation, the least common multiple of the first positive integers, limits related to prime numbers, a generalized bisector theorem, values of arithmetical functions and factorials, and more.
(13138 views)
Book cover: Pluckings from the tree of Smarandache: Sequences and functionsPluckings from the tree of Smarandache: Sequences and functions
by - American Research Press
The third book in a series exploring the set of problems called Smarandache Notions. This work delves more deeply into the mathematics of the problems, the level of difficulty here will be somewhat higher than that of the previous books.
(13318 views)
Book cover: Arithmetic Duality TheoremsArithmetic Duality Theorems
by - BookSurge Publishing
This book, intended for research mathematicians, proves the duality theorems that have come to play an increasingly important role in number theory and arithmetic geometry, for example, in the proof of Fermat's Last Theorem.
(11693 views)
Book cover: The Smarandache FunctionThe Smarandache Function
by - Erhus University Press
The function in the title is originated from the Romanian mathematician Florentin Smarandache, who has significant contributions in mathematics and literature. This text introduces the Smarandache function and discusses its generalisations.
(7683 views)