Logo

An Introduction to Mathematical Logic

Small book cover: An Introduction to Mathematical Logic

An Introduction to Mathematical Logic
by


Number of pages: 229

Description:
This text treats pure logic and in this connection introduces to basic proof-theoretic techniques. In the second part fundamentals of model theory and in the third part those of recursion theory are dealt with. Furthermore, some extensions of first order logic are treated. Finally, axiom systems for number theory are introduced and Godel's theorems are proved.

This document is no more available for free.

Similar books

Book cover: Introduction to Mathematical Logic: A problem solving courseIntroduction to Mathematical Logic: A problem solving course
by - arXiv
This is a set of questions written for a course in Mathematical Logic. Topics covered are: propositional logic; axioms of ZFC; wellorderings and equivalents of AC; ordinal and cardinal arithmetic; first order logic, and the compactness theorem; etc.
(8879 views)
Book cover: Topics in Logic and FoundationsTopics in Logic and Foundations
by - The Pennsylvania State University
This is a set of lecture notes from a 15-week graduate course at the Pennsylvania State University. The course covered some topics which are important in contemporary mathematical logic and foundations but usually omitted from introductory courses.
(486 views)
Book cover: Introduction to Mathematical PhilosophyIntroduction to Mathematical Philosophy
by - University of Massachusetts Amherst
A very accessible mathematical classic. It sets forth in elementary form the logical definition of number, the analysis of the notion of order, the modern doctrine of the infinite, and the theory of descriptions and classes as symbolic fictions.
(9986 views)
Book cover: A Concise Introduction to Mathematical LogicA Concise Introduction to Mathematical Logic
by - Springer
A well-written introduction to the beautiful and coherent subject. It contains classical material such as logical calculi, beginnings of model theory, and Goedel's incompleteness theorems, as well as some topics motivated by applications.
(8436 views)