**A Primer on Mapping Class Groups**

by Benson Farb, Dan Margalit

**Publisher**: Princeton University Press 2011**ISBN/ASIN**: 0691147949**ISBN-13**: 9780691147949**Number of pages**: 509

**Description**:

Our goal in this book is to explain as many important theorems, examples, and techniques as possible, as quickly and directly as possible, while at the same time giving (nearly) full details and keeping the text (nearly) selfcontained. This book contains some simplifications of known approaches and proofs, the exposition of some results that are not readily available, and some new material as well.

Download or read it online for free here:

**Download link**

(3.4MB, PDF)

## Similar books

**Surgery on Compact Manifolds**

by

**C.T.C. Wall, A. A. Ranicki**-

**American Mathematical Society**

This book represents an attempt to collect and systematize the methods and main applications of the method of surgery, insofar as compact (but not necessarily connected, simply connected or closed) manifolds are involved.

(

**6635**views)

**Knot Invariants and Higher Representation Theory**

by

**Ben Webster**-

**arXiv**

We construct knot invariants categorifying the quantum knot variants for all representations of quantum groups. We show that these invariants coincide with previous invariants defined by Khovanov for sl_2 and sl_3 and by Mazorchuk-Stroppel...

(

**4235**views)

**A Geometric Approach to Differential Forms**

by

**David Bachman**-

**arXiv**

This is a textbook on differential forms. The primary target audience is sophomore level undergraduates enrolled in a course in vector calculus. Later chapters will be of interest to advanced undergraduate and beginning graduate students.

(

**11059**views)

**Diffeomorphisms of Elliptic 3-Manifolds**

by

**S. Hong, J. Kalliongis, D. McCullough, J. H. Rubinstein**-

**arXiv**

The elliptic 3-manifolds are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature. For any elliptic 3-manifold M, the inclusion from the isometry group of M to the diffeomorphism group of M is a homotopy equivalence.

(

**5742**views)