**A Primer on Mapping Class Groups**

by Benson Farb, Dan Margalit

**Publisher**: Princeton University Press 2011**ISBN/ASIN**: 0691147949**ISBN-13**: 9780691147949**Number of pages**: 509

**Description**:

Our goal in this book is to explain as many important theorems, examples, and techniques as possible, as quickly and directly as possible, while at the same time giving (nearly) full details and keeping the text (nearly) selfcontained. This book contains some simplifications of known approaches and proofs, the exposition of some results that are not readily available, and some new material as well.

Download or read it online for free here:

**Download link**

(3.4MB, PDF)

## Similar books

**Unsolved Problems in Virtual Knot Theory and Combinatorial Knot Theory**

by

**R. Fenn, D.P. Ilyutko, L.H. Kauffman, V.O. Manturov**-

**arXiv**

The purpose of this paper is to give an introduction to virtual knot theory and to record a collection of research problems that the authors have found fascinating. The paper introduces the theory and discusses some problems in that context.

(

**2201**views)

**Lectures on Polyhedral Topology**

by

**John R. Stallings**-

**Tata Institute of Fundamental Research**

These notes contain: The elementary theory of finite polyhedra in real vector spaces; A theory of 'general position' (approximation of maps), based on 'non-degeneracy'. A theory of 'regular neighbourhoods' in arbitrary polyhedra; etc.

(

**4555**views)

**Knot Invariants and Higher Representation Theory**

by

**Ben Webster**-

**arXiv**

We construct knot invariants categorifying the quantum knot variants for all representations of quantum groups. We show that these invariants coincide with previous invariants defined by Khovanov for sl_2 and sl_3 and by Mazorchuk-Stroppel...

(

**2912**views)

**High-dimensional Knot Theory**

by

**Andrew Ranicki**-

**Springer**

This book is an introduction to high-dimensional knot theory. It uses surgery theory to provide a systematic exposition, and it serves as an introduction to algebraic surgery theory, using high-dimensional knots as the geometric motivation.

(

**7704**views)