**Elliptic Curves over Function Fields**

by Douglas Ulmer

**Publisher**: arXiv 2011**Number of pages**: 72

**Description**:

These are the notes from a course of five lectures at the 2009 Park City Math Institute. The focus is on elliptic curves over function fields over finite fields. In the first three lectures, we explain the main classical results (mainly due to Tate) on the Birch and Swinnerton-Dyer conjecture in this context and its connection to the Tate conjecture about divisors on surfaces.

Download or read it online for free here:

**Download link**

(670KB, PDF)

## Similar books

**Arithmetic Duality Theorems**

by

**J.S. Milne**-

**BookSurge Publishing**

This book, intended for research mathematicians, proves the duality theorems that have come to play an increasingly important role in number theory and arithmetic geometry, for example, in the proof of Fermat's Last Theorem.

(

**11234**views)

**Geometric Theorems and Arithmetic Functions**

by

**Jozsef Sandor**-

**American Research Press**

Contents: on Smarandache's Podaire theorem, Diophantine equation, the least common multiple of the first positive integers, limits related to prime numbers, a generalized bisector theorem, values of arithmetical functions and factorials, and more.

(

**12625**views)

**A set of new Smarandache functions, sequences and conjectures in number theory**

by

**Felice Russo**-

**American Research Press**

The fascinating Smarandache's universe is halfway between the recreational mathematics and the number theory. This book presents new Smarandache functions, conjectures, solved and unsolved problems, new type sequences and new notions in number theory.

(

**8340**views)

**Pluckings from the tree of Smarandache: Sequences and functions**

by

**Charles Ashbacher**-

**American Research Press**

The third book in a series exploring the set of problems called Smarandache Notions. This work delves more deeply into the mathematics of the problems, the level of difficulty here will be somewhat higher than that of the previous books.

(

**12857**views)