**Contact Geometry**

by Hansjoerg Geiges

**Publisher**: arXiv 2004**Number of pages**: 86

**Description**:

This is an introductory text on the more topological aspects of contact geometry, written for the Handbook of Differential Geometry vol. 2. After discussing (and proving) some of the fundamental results of contact topology (neighbourhood theorems, isotopy extension theorems, approximation theorems), I move on to a detailed exposition of the original proof of the Lutz-Martinet theorem.

Download or read it online for free here:

**Download link**

(730KB, PDF)

## Similar books

**Lecture Notes on Differentiable Manifolds**

by

**Jie Wu**-

**National University of Singapore**

Contents: Tangent Spaces, Vector Fields in Rn and the Inverse Mapping Theorem; Topological and Differentiable Manifolds, Diffeomorphisms, Immersions, Submersions and Submanifolds; Examples of Manifolds; Fibre Bundles and Vector Bundles; etc.

(

**7112**views)

**Lectures on Symplectic Geometry**

by

**Ana Cannas da Silva**-

**Springer**

An introduction to symplectic geometry and topology, it provides a useful and effective synopsis of the basics of symplectic geometry and serves as the springboard for a prospective researcher. The text is written in a clear, easy-to-follow style.

(

**9002**views)

**Differential Topology**

by

**Bjorn Ian Dundas**-

**Johns Hopkins University**

This is an elementary text book for the civil engineering students with no prior background in point-set topology. This is a rather terse mathematical text, but provided with an abundant supply of examples and exercises with hints.

(

**5490**views)

**Introduction to Symplectic and Hamiltonian Geometry**

by

**Ana Cannas da Silva**

The text covers foundations of symplectic geometry in a modern language. It describes symplectic manifolds and their transformations, and explains connections to topology and other geometries. It also covers hamiltonian fields and hamiltonian actions.

(

**8850**views)