**Contact Geometry**

by Hansjoerg Geiges

**Publisher**: arXiv 2004**Number of pages**: 86

**Description**:

This is an introductory text on the more topological aspects of contact geometry, written for the Handbook of Differential Geometry vol. 2. After discussing (and proving) some of the fundamental results of contact topology (neighbourhood theorems, isotopy extension theorems, approximation theorems), I move on to a detailed exposition of the original proof of the Lutz-Martinet theorem.

Download or read it online for free here:

**Download link**

(730KB, PDF)

## Similar books

**Differential Topology and Morse Theory**

by

**Dirk Schuetz**-

**University of Sheffield**

These notes describe basic material about smooth manifolds (vector fields, flows, tangent bundle, partitions of unity, Whitney embedding theorem, foliations, etc...), introduction to Morse theory, and various applications.

(

**6476**views)

**Differentiable Manifolds**

by

**Nigel Hitchin**

The historical driving force of the theory of manifolds was General Relativity, where the manifold is four-dimensional spacetime, wormholes and all. This text is occupied with the theory of differential forms and the exterior derivative.

(

**13077**views)

**Manifolds of Differentiable Mappings**

by

**Peter W. Michor**-

**Birkhauser**

This book is devoted to the theory of manifolds of differentiable mappings and contains result which can be proved without the help of a hard implicit function theorem of nuclear function spaces. All the necessary background is developed in detail.

(

**6173**views)

**Lectures on Symplectic Geometry**

by

**Ana Cannas da Silva**-

**Springer**

An introduction to symplectic geometry and topology, it provides a useful and effective synopsis of the basics of symplectic geometry and serves as the springboard for a prospective researcher. The text is written in a clear, easy-to-follow style.

(

**10598**views)