Contact Geometry
by Hansjoerg Geiges
Publisher: arXiv 2004
Number of pages: 86
Description:
This is an introductory text on the more topological aspects of contact geometry, written for the Handbook of Differential Geometry vol. 2. After discussing (and proving) some of the fundamental results of contact topology (neighbourhood theorems, isotopy extension theorems, approximation theorems), I move on to a detailed exposition of the original proof of the Lutz-Martinet theorem.
Download or read it online for free here:
Download link
(730KB, PDF)
Similar books

by Thomas E. Cecil, Shiing-shen Chern - Cambridge University Press
Tight and taut submanifolds form an important class of manifolds with special curvature properties, one that has been studied intensively by differential geometers since the 1950's. This book contains six articles by leading experts in the field.
(12921 views)

by Karl-Hermann Neeb - FAU Erlangen-Nuernberg
From the table of contents: Basic Concepts (The concept of a fiber bundle, Coverings, Morphisms...); Bundles and Cocycles; Cohomology of Lie Algebras; Smooth G-valued Functions; Connections on Principal Bundles; Curvature; Perspectives.
(10843 views)

by Michael Muger - Radboud University
Contents: Why Differential Topology? Basics of Differentiable Manifolds; Local structure of smooth maps; Transversality Theory; More General Theory; Differential Forms and de Rham Theory; Tensors and some Riemannian Geometry; Morse Theory; etc.
(12932 views)

by Bjorn Ian Dundas - Johns Hopkins University
This is an elementary text book for the civil engineering students with no prior background in point-set topology. This is a rather terse mathematical text, but provided with an abundant supply of examples and exercises with hints.
(11860 views)