Logo

Quantum Transients by A. del Campo, G. Garcia-Calderon, J. G. Muga

Small book cover: Quantum Transients

Quantum Transients
by

Publisher: arXiv
Number of pages: 76

Description:
Quantum transients are temporary features of matter waves before they reach a stationary regime. Transients may arise after the preparation of an unstable initial state or due to a sudden interaction or a change in the boundary conditions. Examples are diffraction in time, buildup processes, decay, trapping, forerunners or pulse formation, as well as other phenomena recently discovered, such as the simultaneous arrival of a wave peak at arbitrarily distant observers.

Home page url

Download or read it online for free here:
Download link
(1.7MB, PDF)

Similar books

Book cover: Quantum MechanicsQuantum Mechanics
by - The University of Texas at Austin
Quantum Mechanics by Richard Fitzpatrick is a complete set of lecture notes for a graduate quantum mechanics course. Topics covered include the fundamentals of quantum mechanics, angular momentum, approximation methods, and scattering theory.
(11441 views)
Book cover: The Cellular Automaton Interpretation of Quantum MechanicsThe Cellular Automaton Interpretation of Quantum Mechanics
by - Springer
This book presents the deterministic view of quantum mechanics developed by Gerard 't Hooft. 't Hooft has revived the old hidden variable ideas, but now in a much more systematic way. Quantum mechanics is viewed as a tool rather than a theory.
(807 views)
Book cover: Circuit QEDCircuit QED
by - arXiv
These notes aim to provide a non-expert introduction to the field of circuit QED, to give a basic appreciation of the promise and challenges of the field, along with a number of key concepts that will be useful for the reader who is new to the field.
(3349 views)
Book cover: The Physics of Quantum MechanicsThe Physics of Quantum Mechanics
by - Capella Archive
This book aims to give students the best possible understanding of the physical implications of quantum mechanics by explaining how quantum systems evolve in time, and showing the close parallels between quantum and classical dynamics.
(9328 views)