**Theoretic Arithmetic**

by Thomas Taylor, A. J. Valpy

1816**ISBN/ASIN**: B004VXQEYI**Number of pages**: 286

**Description**:

Theoretic arithmetic, in three books: containing the substance of all that has been written on this subject by Theo of Smyrna, Nicomachus, Iamblichus, and Boetius, together with some remarkable particulars respecting perfect, amicable, and other numbers, which are not to be found in the writings of any ancient or modern mathematicians. Likewise, a specimen of the manner in which the Pythagoreans philosophized about numbers, and a development of their mystical and theological arithmetic.

Download or read it online for free here:

**Download link**

(22MB, PDF)

## Similar books

**The Theory of Numbers**

by

**R. D. Carmichael**-

**John Wiley & Sons**

The purpose of this book is to give the reader a convenient introduction to the theory of numbers. The treatment throughout is made as brief as is possible consistent with clearness and is confined entirely to fundamental matters.

(

**8779**views)

**Elementary Number Theory**

by

**William Edwin Clark**-

**University of South Florida**

One might think that of all areas of mathematics arithmetic should be the simplest, but it is a surprisingly deep subject. It is assumed that students have some familiarity with set theory, calculus, and a certain amount of mathematical maturity.

(

**9940**views)

**An Introductory Course in Elementary Number Theory**

by

**Wissam Raji**-

**The Saylor Foundation**

These are notes for an undergraduate course in number theory. Proofs of basic theorems are presented in an interesting and comprehensive way that can be read and understood even by non-majors. The exercises broaden the understanding of the concepts.

(

**1249**views)

**An Introduction to the Theory of Numbers**

by

**Leo Moser**-

**The Trillia Group**

The book on elementary number theory: compositions and partitions, arithmetic functions, distribution of primes, irrational numbers, congruences, Diophantine equations; combinatorial number theory, and geometry of numbers.

(

**12892**views)