Logo

Finite Group Schemes by Richard Pink

Small book cover: Finite Group Schemes

Finite Group Schemes
by

Publisher: ETH Zurich
Number of pages: 78

Description:
The aim of the lecture course is the classification of finite commutative group schemes over a perfect field of characteristic p, using the classical approach by contravariant Dieudonne theory. The theory is developed from scratch; emphasis is placed on complete proofs. No prerequisites other than a good knowledge of algebra and the basic properties of categories and schemes are required.

Home page url

Download or read it online for free here:
Download link
(550KB, PDF)

Similar books

Book cover: Congruence Lattices of Finite AlgebrasCongruence Lattices of Finite Algebras
by - arXiv
We review a number of methods for finding a finite algebra with a given congruence lattice, including searching for intervals in subgroup lattices. We also consider methods for proving that algebras with a given congruence lattice exist...
(4667 views)
Book cover: Combinatorial Group TheoryCombinatorial Group Theory
by - University of Melbourne
Lecture notes for the subject Combinatorial Group Theory at the University of Melbourne. Contents: About groups; Free groups and presentations; Construction of new groups; Properties, embeddings and examples; Subgroup Theory; Decision Problems.
(9238 views)
Book cover: Smarandache SemigroupsSmarandache Semigroups
by - American Research Press
The Smarandache semigroups exhibit properties of both a group and a semigroup simultaneously. This book assumes the reader to have a good background on group theory; we give some recollection about groups and some of its properties for reference.
(5496 views)
Book cover: Frobenius Splittings and B-ModulesFrobenius Splittings and B-Modules
by - Springer
The course given by the author in 1992 explains the solution by O. Mathieu of some conjectures in the representation theory of arbitrary semisimple algebraic groups. The conjectures concern filtrations of 'standard' representations.
(4600 views)