**Introduction to Functional Analysis**

by Vladimir V. Kisil

**Publisher**: University of Leeds 2010**Number of pages**: 111

**Description**:

Contents: Motivating Example - Fourier Series; Basics of Linear Spaces; Orthogonality; Fourier Analysis; Duality of Linear Spaces; Operators; Spectral Theory; Compactness; The spectral theorem for compact normal operators; Applications to integral equations; Banach and Normed Spaces; Measure Theory; Integration; Functional Spaces; Fourier Transform.

Download or read it online for free here:

**Download link**

(1.2MB, PDF)

## Similar books

**Lectures On Some Fixed Point Theorems Of Functional Analysis**

by

**F.F. Bonsall**-

**Tata Institute Of Fundamental Research**

The book is concerned with the application of a variety of methods to both non-linear (fixed point) problems and linear (eigenvalue) problems in infinite dimensional spaces. Author was interested in the construction of eigenvectors and eigenvalues.

(

**7216**views)

**Functional Analysis Lecture Notes**

by

**T.B. Ward**-

**University of East Anglia**

Lecture notes for a 3rd year undergraduate course in functional analysis. By the end of the course, you should have a good understanding of normed vector spaces, Hilbert and Banach spaces, fixed point theorems and examples of function spaces.

(

**8370**views)

**Jordan Operator Algebras**

by

**Harald Hanche-Olsen, Erling StÃ¸rmer**-

**Pitman**

Introduction to Jordan algebras of operators on Hilbert spaces and their abstract counterparts. It develops the theory of Jordan operator algebras to a point from which the theory of C*- and von Neumann algebras can be generalized to Jordan algebras.

(

**10368**views)

**Functional Analysis**

by

**Alexander C. R. Belton**-

**Lancaster University**

These lecture notes are an expanded version of a set written for a course given to final-year undergraduates at the University of Oxford. A thorough understanding of Banach and Hilbert spaces is a prerequisite for this material.

(

**8696**views)