**Introduction to Functional Analysis**

by Vladimir V. Kisil

**Publisher**: University of Leeds 2010**Number of pages**: 111

**Description**:

Contents: Motivating Example - Fourier Series; Basics of Linear Spaces; Orthogonality; Fourier Analysis; Duality of Linear Spaces; Operators; Spectral Theory; Compactness; The spectral theorem for compact normal operators; Applications to integral equations; Banach and Normed Spaces; Measure Theory; Integration; Functional Spaces; Fourier Transform.

Download or read it online for free here:

**Download link**

(1.2MB, PDF)

## Similar books

**Banach Modules and Functors on Categories of Banach Spaces**

by

**J. Cigler, V. Losert, P.W. Michor**-

**Marcel Dekker Inc**

This book is the final outgrowth of a sequence of seminars about functors on categories of Banach spaces (held 1971 - 1975) and several doctoral dissertations. It has been written for readers with a general background in functional analysis.

(

**5172**views)

**Notes on Operator Algebras**

by

**G. Jungman**-

**Los Alamos National Laboratory**

Lecture notes on operator algebras. From the table of contents: Structure Theory I; von Neumann Algebras; States and Representations; Structure Theory II; Matrices; Automorphism Groups; Extensions; K-Theory; Nuclear C* Algebras.

(

**6424**views)

**Functors and Categories of Banach Spaces**

by

**Peter W. Michor**-

**Springer**

The aim of this book is to develop the theory of Banach operator ideals and metric tensor products along categorical lines: these two classes of mathematical objects are endofunctors on the category Ban of all Banach spaces in a natural way.

(

**5490**views)

**Topics in Real and Functional Analysis**

by

**Gerald Teschl**-

**Universitaet Wien**

This manuscript provides a brief introduction to Real and (linear and nonlinear) Functional Analysis. It covers basic Hilbert and Banach space theory as well as basic measure theory including Lebesgue spaces and the Fourier transform.

(

**9347**views)