Introduction to Functional Analysis
by Vladimir V. Kisil
Publisher: University of Leeds 2021
Number of pages: 166
Description:
Contents: Motivating Example - Fourier Series; Basics of Linear Spaces; Orthogonality; Fourier Analysis; Duality of Linear Spaces; Operators; Spectral Theory; Compactness; The spectral theorem for compact normal operators; Applications to integral equations; Banach and Normed Spaces; Measure Theory; Integration; Functional Spaces; Fourier Transform.
Download or read it online for free here:
Download link
(1.3MB, PDF)
Similar books

by Gerald Teschl - University of Vienna
This manuscript provides a brief introduction to nonlinear functional analysis. As an application we consider partial differential equations and prove existence and uniqueness for solutions of the stationary Navier-Stokes equation.
(14214 views)

by Ville Turunen - Aalto TKK
In this book you will learn something about functional analytic framework of topology. And you will get an access to more advanced literature on non-commutative geometry, a quite recent topic in mathematics and mathematical physics.
(10956 views)

by Leif Mejlbro - BookBoon
Examples of Hilbert-Smith operators and other types of integral operators, Hilbert Schmidt norm, Volterra integral operator, Cauchy-Schwarz inequality, Hoelder inequality, iterated kernels, Hermitian kernel, and much more.
(11805 views)

by F.F. Bonsall - Tata Institute Of Fundamental Research
The book is concerned with the application of a variety of methods to both non-linear (fixed point) problems and linear (eigenvalue) problems in infinite dimensional spaces. Author was interested in the construction of eigenvectors and eigenvalues.
(10249 views)