Logo

Introduction to Functional Analysis

Small book cover: Introduction to Functional Analysis

Introduction to Functional Analysis
by

Publisher: University of Leeds
Number of pages: 111

Description:
Contents: Motivating Example - Fourier Series; Basics of Linear Spaces; Orthogonality; Fourier Analysis; Duality of Linear Spaces; Operators; Spectral Theory; Compactness; The spectral theorem for compact normal operators; Applications to integral equations; Banach and Normed Spaces; Measure Theory; Integration; Functional Spaces; Fourier Transform.

Home page url

Download or read it online for free here:
Download link
(1.2MB, PDF)

Similar books

Book cover: Banach Modules and Functors on Categories of Banach SpacesBanach Modules and Functors on Categories of Banach Spaces
by - Marcel Dekker Inc
This book is the final outgrowth of a sequence of seminars about functors on categories of Banach spaces (held 1971 - 1975) and several doctoral dissertations. It has been written for readers with a general background in functional analysis.
(5172 views)
Book cover: Notes on Operator AlgebrasNotes on Operator Algebras
by - Los Alamos National Laboratory
Lecture notes on operator algebras. From the table of contents: Structure Theory I; von Neumann Algebras; States and Representations; Structure Theory II; Matrices; Automorphism Groups; Extensions; K-Theory; Nuclear C* Algebras.
(6424 views)
Book cover: Functors and Categories of Banach SpacesFunctors and Categories of Banach Spaces
by - Springer
The aim of this book is to develop the theory of Banach operator ideals and metric tensor products along categorical lines: these two classes of mathematical objects are endofunctors on the category Ban of all Banach spaces in a natural way.
(5490 views)
Book cover: Topics in Real and Functional AnalysisTopics in Real and Functional Analysis
by - Universitaet Wien
This manuscript provides a brief introduction to Real and (linear and nonlinear) Functional Analysis. It covers basic Hilbert and Banach space theory as well as basic measure theory including Lebesgue spaces and the Fourier transform.
(9347 views)