**Applied Mathematical Programming Using Algebraic Systems**

by Bruce A. McCarl, Thomas H. Spreen

**Publisher**: Texas A&M University 2011**Number of pages**: 567

**Description**:

This book is intended to both serve as a reference guide and a text for a course on Applied Mathematical Programming. The material presented will concentrate upon conceptual issues, problem formulation, computerized problem solution, and results interpretation. Solution algorithms will be treated only to the extent necessary to interpret solutions and overview events that may occur during the solution process.

Download or read it online for free here:

**Download link**

(1.7MB, PDF)

## Similar books

**Data Assimilation: A Mathematical Introduction**

by

**K.J.H. Law, A.M. Stuart, K.C. Zygalakis**-

**arXiv.org**

This book provides a systematic treatment of the mathematical underpinnings of work in data assimilation. Authors develop a framework in which a Bayesian formulation of the problem provides the bedrock for the derivation and analysis of algorithms.

(

**2153**views)

**Optimization Models For Decision Making**

by

**Katta G. Murty**-

**Springer**

This is a Junior level book on some versatile optimization models for decision making in common use. The aim of this book is to develop skills in mathematical modeling, and in algorithms and computational methods to solve and analyze these models.

(

**6516**views)

**The Design of Approximation Algorithms**

by

**D. P. Williamson, D. B. Shmoys**-

**Cambridge University Press**

This book shows how to design approximation algorithms: efficient algorithms that find provably near-optimal solutions. It is organized around techniques for designing approximation algorithms, including greedy and local search algorithms.

(

**10921**views)

**Convex Optimization: Algorithms and Complexity**

by

**Sebastien Bubeck**-

**arXiv.org**

This text presents the main complexity theorems in convex optimization and their algorithms. Starting from the fundamental theory of black-box optimization, the material progresses towards recent advances in structural and stochastic optimization.

(

**2004**views)