**Applied Mathematical Programming Using Algebraic Systems**

by Bruce A. McCarl, Thomas H. Spreen

**Publisher**: Texas A&M University 2011**Number of pages**: 567

**Description**:

This book is intended to both serve as a reference guide and a text for a course on Applied Mathematical Programming. The material presented will concentrate upon conceptual issues, problem formulation, computerized problem solution, and results interpretation. Solution algorithms will be treated only to the extent necessary to interpret solutions and overview events that may occur during the solution process.

Download or read it online for free here:

**Download link**

(1.7MB, PDF)

## Similar books

**Universal Optimization and Its Application**

by

**Alexander Bolonkin**-

**viXra.org**

This book describes new method of optimization (''Method of Deformation of Functional'') that has the advantages at greater generality and flexibility as well as the ability to solve complex problems which other methods cannot solve.

(

**880**views)

**An Introduction to Nonlinear Optimization Theory**

by

**Marius Durea, Radu Strugariu**-

**De Gruyter Open**

Starting with the case of differentiable data and the classical results on constrained optimization problems, continuing with the topic of nonsmooth objects involved in optimization, the book concentrates on both theoretical and practical aspects.

(

**1811**views)

**Data Assimilation: A Mathematical Introduction**

by

**K.J.H. Law, A.M. Stuart, K.C. Zygalakis**-

**arXiv.org**

This book provides a systematic treatment of the mathematical underpinnings of work in data assimilation. Authors develop a framework in which a Bayesian formulation of the problem provides the bedrock for the derivation and analysis of algorithms.

(

**890**views)

**Optimization and Dynamical Systems**

by

**U. Helmke, J. B. Moore**-

**Springer**

Aimed at mathematics and engineering graduate students and researchers in the areas of optimization, dynamical systems, control systems, signal processing, and linear algebra. The problems solved are those of linear algebra and linear systems theory.

(

**8808**views)