Logo

Applied Mathematical Programming Using Algebraic Systems

Small book cover: Applied Mathematical Programming Using Algebraic Systems

Applied Mathematical Programming Using Algebraic Systems
by

Publisher: Texas A&M University
Number of pages: 567

Description:
This book is intended to both serve as a reference guide and a text for a course on Applied Mathematical Programming. The material presented will concentrate upon conceptual issues, problem formulation, computerized problem solution, and results interpretation. Solution algorithms will be treated only to the extent necessary to interpret solutions and overview events that may occur during the solution process.

Home page url

Download or read it online for free here:
Download link
(1.7MB, PDF)

Similar books

Book cover: Iterative Methods for OptimizationIterative Methods for Optimization
by - Society for Industrial Mathematics
This book presents a carefully selected group of methods for unconstrained and bound constrained optimization problems and analyzes them in depth both theoretically and algorithmically. It focuses on clarity in algorithmic description and analysis.
(9778 views)
Book cover: Applied Mathematical ProgrammingApplied Mathematical Programming
by - Addison-Wesley
This book shows you how to model a wide array of problems. Covered are topics such as linear programming, duality theory, sensitivity analysis, network/dynamic programming, integer programming, non-linear programming, and my favorite, etc.
(17331 views)
Book cover: Robust OptimizationRobust Optimization
by - Princeton University Press
Written by the principal developers of robust optimization, and describing the main achievements of a decade of research, this is the first book to provide a comprehensive and up-to-date account of this relatively new approach to optimization.
(9444 views)
Book cover: Convex Optimization: Algorithms and ComplexityConvex Optimization: Algorithms and Complexity
by - arXiv.org
This text presents the main complexity theorems in convex optimization and their algorithms. Starting from the fundamental theory of black-box optimization, the material progresses towards recent advances in structural and stochastic optimization.
(4819 views)