Logo

Applied Mathematical Programming Using Algebraic Systems

Small book cover: Applied Mathematical Programming Using Algebraic Systems

Applied Mathematical Programming Using Algebraic Systems
by

Publisher: Texas A&M University
Number of pages: 567

Description:
This book is intended to both serve as a reference guide and a text for a course on Applied Mathematical Programming. The material presented will concentrate upon conceptual issues, problem formulation, computerized problem solution, and results interpretation. Solution algorithms will be treated only to the extent necessary to interpret solutions and overview events that may occur during the solution process.

Home page url

Download or read it online for free here:
Download link
(1.7MB, PDF)

Similar books

Book cover: Data Assimilation: A Mathematical IntroductionData Assimilation: A Mathematical Introduction
by - arXiv.org
This book provides a systematic treatment of the mathematical underpinnings of work in data assimilation. Authors develop a framework in which a Bayesian formulation of the problem provides the bedrock for the derivation and analysis of algorithms.
(2153 views)
Book cover: Optimization Models For Decision MakingOptimization Models For Decision Making
by - Springer
This is a Junior level book on some versatile optimization models for decision making in common use. The aim of this book is to develop skills in mathematical modeling, and in algorithms and computational methods to solve and analyze these models.
(6516 views)
Book cover: The Design of Approximation AlgorithmsThe Design of Approximation Algorithms
by - Cambridge University Press
This book shows how to design approximation algorithms: efficient algorithms that find provably near-optimal solutions. It is organized around techniques for designing approximation algorithms, including greedy and local search algorithms.
(10921 views)
Book cover: Convex Optimization: Algorithms and ComplexityConvex Optimization: Algorithms and Complexity
by - arXiv.org
This text presents the main complexity theorems in convex optimization and their algorithms. Starting from the fundamental theory of black-box optimization, the material progresses towards recent advances in structural and stochastic optimization.
(2004 views)