**Optimization Algorithms on Matrix Manifolds**

by P.-A. Absil, R. Mahony, R. Sepulchre

**Publisher**: Princeton University Press 2007**ISBN/ASIN**: 0691132984**ISBN-13**: 9780691132983**Number of pages**: 240

**Description**:

Many problems in the sciences and engineering can be rephrased as optimization problems on matrix search spaces endowed with a so-called manifold structure. This book shows how to exploit the special structure of such problems to develop efficient numerical algorithms. It places careful emphasis on both the numerical formulation of the algorithm and its differential geometric abstraction--illustrating how good algorithms draw equally from the insights of differential geometry, optimization, and numerical analysis.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Special Course in Functional Analysis: (Non-)Commutative Topology**

by

**Ville Turunen**-

**Aalto TKK**

In this book you will learn something about functional analytic framework of topology. And you will get an access to more advanced literature on non-commutative geometry, a quite recent topic in mathematics and mathematical physics.

(

**6810**views)

**Manifolds and Differential Forms**

by

**Reyer Sjamaar**-

**Cornell University**

The text covers manifolds and differential forms for an audience of undergraduates who have taken a typical calculus sequence, including basic linear algebra and multivariable calculus up to the integral theorems of Green, Gauss and Stokes.

(

**7992**views)

**Noncommutative Localization in Algebra and Topology**

by

**Andrew Ranicki**-

**Cambridge University Press**

Noncommutative localization is a technique for constructing new rings by inverting elements, matrices and more generally morphisms of modules. The applications to topology are via the noncommutative localizations of the fundamental group rings.

(

**4994**views)

**The Convenient Setting of Global Analysis**

by

**Andreas Kriegl, Peter W. Michor**-

**American Mathematical Society**

This book lays the foundations of differential calculus in infinite dimensions and discusses those applications in infinite dimensional differential geometry and global analysis not involving Sobolev completions and fixed point theory.

(

**9010**views)