Optimization Algorithms on Matrix Manifolds

Large book cover: Optimization Algorithms on Matrix Manifolds

Optimization Algorithms on Matrix Manifolds

Publisher: Princeton University Press
ISBN/ASIN: 0691132984
ISBN-13: 9780691132983
Number of pages: 240

Many problems in the sciences and engineering can be rephrased as optimization problems on matrix search spaces endowed with a so-called manifold structure. This book shows how to exploit the special structure of such problems to develop efficient numerical algorithms. It places careful emphasis on both the numerical formulation of the algorithm and its differential geometric abstraction--illustrating how good algorithms draw equally from the insights of differential geometry, optimization, and numerical analysis.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Floer Homology, Gauge Theory, and Low Dimensional TopologyFloer Homology, Gauge Theory, and Low Dimensional Topology
by - American Mathematical Society
Mathematical gauge theory studies connections on principal bundles. The book provides an introduction to current research, covering material from Heegaard Floer homology, contact geometry, smooth four-manifold topology, and symplectic four-manifolds.
Book cover: The Convenient Setting of Global AnalysisThe Convenient Setting of Global Analysis
by - American Mathematical Society
This book lays the foundations of differential calculus in infinite dimensions and discusses those applications in infinite dimensional differential geometry and global analysis not involving Sobolev completions and fixed point theory.
Book cover: Topology and Physics: A Historical EssayTopology and Physics: A Historical Essay
by - arXiv
In this essay we wish to embark on the telling of a story which, almost certainly, stands only at its beginning. We shall discuss the links and the interaction between one very old subject, physics, and a much newer one, topology.
Book cover: ManifoldsManifolds
by - King's College London
From the table of contents: Manifolds (Elementary Topology and Definitions); The Tangent Space; Maps Between Manifolds; Vector Fields; Tensors; Differential Forms; Connections, Curvature and Metrics; Riemannian Manifolds.