Logo

A Basic Introduction to Large Deviations: Theory, Applications, Simulations

Small book cover: A Basic Introduction to Large Deviations: Theory, Applications, Simulations

A Basic Introduction to Large Deviations: Theory, Applications, Simulations
by

Publisher: arXiv
Number of pages: 56

Description:
The theory of large deviations deals with the probabilities of rare events (or fluctuations) that are exponentially small as a function of some parameter, e.g., the number of random components of a system, the time over which a stochastic system is observed, the amplitude of the noise perturbing a dynamical system or the temperature of a chemical reaction.

Home page url

Download or read it online for free here:
Download link
(1.4MB, PDF)

Similar books

Book cover: Phase Transitions and Collective PhenomenaPhase Transitions and Collective Phenomena
by - University of Cambridge
Contents -- Preface; Chapter 1: Critical Phenomena; Chapter 2: Ginzburg-Landau Theory; Chapter 3: Scaling Theory; Chapter 4: Renormalisation Group; Chapter 5: Topological Phase Transitions; Chapter 6: Functional Methods in Quantum Mechanics.
(8309 views)
Book cover: Non-Equilibrium Statistical MechanicsNon-Equilibrium Statistical Mechanics
by - Imperial College London
This is an attempt to deliver, within a couple of hours, a few key-concepts of non-equilibrium statistical mechanics. The goal is to develop some ideas of contemporary research. Many of the ideas are illustrated or even introduced by examples.
(8333 views)
Book cover: Statistical Field TheoryStatistical Field Theory
by - University of Cambridge
These notes are concerned with the physics of phase transitions: the phenomenon that in particular environments, many systems exhibit singularities in the thermodynamic variables which best describe the macroscopic state of the system.
(9846 views)
Book cover: An Introduction to Monte Carlo Simulations in Statistical PhysicsAn Introduction to Monte Carlo Simulations in Statistical Physics
by - arXiv
A brief introduction to the technique of Monte Carlo simulations in statistical physics. The topics covered include statistical ensembles random and pseudo random numbers, random sampling techniques, importance sampling, Markov chain, etc.
(12137 views)