**A Quick Review of Commutative Algebra**

by Sudhir R. Ghorpade

**Publisher**: Indian Institute of Technology, Bombay 2000**Number of pages**: 13

**Description**:

These notes attempt to give a rapid review of the rudiments of classical commutative algebra. Some of the main results whose proofs are outlined here are: Hilbert basis theorem, primary decomposition of ideals in noetherian rings, Krull intersection theorem, Going up and Going down theorems for integral extensions, Noether's Normalization Lemma and Hilbert's Nullstellensatz.

Download or read it online for free here:

**Download link**

(200KB, PDF)

## Similar books

**Lectures on Commutative Algebra**

by

**Sudhir R. Ghorpade**-

**Indian Institute of Technology, Bombay**

These lecture notes attempt to give a rapid review of the rudiments of classical commutative algebra. Topics covered: rings and modules, Noetherian rings, integral extensions, Dedekind domains, and primary decomposition of modules.

(

**5001**views)

**Commutative Algebra and Noncommutative Algebraic Geometry**

by

**David Eisenbud, et al.**-

**Cambridge University Press**

The books cover birational geometry, D-modules, invariant theory, matrix factorizations, noncommutative resolutions, singularity categories, support varieties, tilting theory, etc. These volumes reflect the lively interaction between the subjects.

(

**1350**views)

**Frobenius Splitting in Commutative Algebra**

by

**Karen E. Smith, Wenliang Zhang**-

**arXiv**

Frobenius splitting has inspired a vast arsenal of techniques in commutative algebra, algebraic geometry, and representation theory. The purpose of these lectures is to give a gentle introduction to Frobenius splitting for beginners.

(

**2472**views)

**Determinantal Rings**

by

**Winfried Bruns, Udo Vetter**-

**Springer**

Determinantal rings and varieties have been a central topic of commutative algebra and algebraic geometry. The book gives a coherent treatment of the structure of determinantal rings. The approach is via the theory of algebras with straightening law.

(

**6258**views)