Theory and Applications of Lattice Point Methods for Binomial Ideals
by Ezra Miller
Publisher: arXiv 2010
Number of pages: 57
Description:
This is a survey of methods surrounding lattice point methods for binomial ideals. The exposition is aimed at students and researchers in algebra; it includes many examples, open problems, and elementary introductions to the motivations and background from outside of algebra.
Download or read it online for free here:
Download link
(640KB, PDF)
Similar books
Introduction to Commutative Algebra
by Thomas J. Haines - University of Maryland
Notes for an introductory course on commutative algebra. Algebraic geometry uses commutative algebraic as its 'local machinery'. The goal of these lectures is to study commutative algebra and some topics in algebraic geometry in a parallel manner.
(10704 views)
by Thomas J. Haines - University of Maryland
Notes for an introductory course on commutative algebra. Algebraic geometry uses commutative algebraic as its 'local machinery'. The goal of these lectures is to study commutative algebra and some topics in algebraic geometry in a parallel manner.
(10704 views)
Determinantal Rings
by Winfried Bruns, Udo Vetter - Springer
Determinantal rings and varieties have been a central topic of commutative algebra and algebraic geometry. The book gives a coherent treatment of the structure of determinantal rings. The approach is via the theory of algebras with straightening law.
(11839 views)
by Winfried Bruns, Udo Vetter - Springer
Determinantal rings and varieties have been a central topic of commutative algebra and algebraic geometry. The book gives a coherent treatment of the structure of determinantal rings. The approach is via the theory of algebras with straightening law.
(11839 views)
A Primer of Commutative Algebra
by J.S. Milne
These notes prove the basic theorems in commutative algebra required for algebraic geometry and algebraic groups. They assume only a knowledge of the algebra usually taught in advanced undergraduate or first-year graduate courses.
(10093 views)
by J.S. Milne
These notes prove the basic theorems in commutative algebra required for algebraic geometry and algebraic groups. They assume only a knowledge of the algebra usually taught in advanced undergraduate or first-year graduate courses.
(10093 views)
Progress in Commutative Algebra 2: Closures, Finiteness and Factorization
by Christopher Francisco, et al. - De Gruyter Open
This volume contains surveys on closure operations, finiteness conditions and factorization. Closure operations on ideals and modules are a bridge between noetherian and nonnoetherian commutative algebra. It contains a guide to closure operations...
(4671 views)
by Christopher Francisco, et al. - De Gruyter Open
This volume contains surveys on closure operations, finiteness conditions and factorization. Closure operations on ideals and modules are a bridge between noetherian and nonnoetherian commutative algebra. It contains a guide to closure operations...
(4671 views)