Logo

Theory and Applications of Lattice Point Methods for Binomial Ideals

Small book cover: Theory and Applications of Lattice Point Methods for Binomial Ideals

Theory and Applications of Lattice Point Methods for Binomial Ideals
by

Publisher: arXiv
Number of pages: 57

Description:
This is a survey of methods surrounding lattice point methods for binomial ideals. The exposition is aimed at students and researchers in algebra; it includes many examples, open problems, and elementary introductions to the motivations and background from outside of algebra.

Home page url

Download or read it online for free here:
Download link
(640KB, PDF)

Similar books

Book cover: Trends in Commutative AlgebraTrends in Commutative Algebra
by - Cambridge University Press
This book focuses on the interaction of commutative algebra with other areas of mathematics, including algebraic geometry, group cohomology and representation theory, and combinatorics, with all necessary background provided.
(6913 views)
Book cover: Determinantal RingsDeterminantal Rings
by - Springer
Determinantal rings and varieties have been a central topic of commutative algebra and algebraic geometry. The book gives a coherent treatment of the structure of determinantal rings. The approach is via the theory of algebras with straightening law.
(6203 views)
Book cover: A Quick Review of Commutative AlgebraA Quick Review of Commutative Algebra
by - Indian Institute of Technology, Bombay
These notes give a rapid review of the rudiments of classical commutative algebra. Some of the main results whose proofs are outlined here are: Hilbert basis theorem, primary decomposition of ideals in noetherian rings, Krull intersection theorem.
(6223 views)
Book cover: The CRing Project: a collaborative open source textbook on commutative algebraThe CRing Project: a collaborative open source textbook on commutative algebra
by - CRing Project
The CRing project is an open source textbook on commutative algebra, aiming to comprehensively cover the foundations needed for algebraic geometry at the EGA or SGA level. Suitable for a beginning undergraduate with a background in abstract algebra.
(5325 views)