Logo

Determinantal Rings by Winfried Bruns, Udo Vetter

Large book cover: Determinantal Rings

Determinantal Rings
by

Publisher: Springer
ISBN/ASIN: 3540194681
ISBN-13: 9783540194682
Number of pages: 244

Description:
Determinantal rings and varieties have been a central topic of commutative algebra and algebraic geometry. Their study has attracted many prominent researchers and has motivated the creation of theories which may now be considered part of general commutative ring theory. The book gives a first coherent treatment of the structure of determinantal rings. The main approach is via the theory of algebras with straightening law.

Download or read it online for free here:
Download link
(1.2MB, PDF)

Similar books

Book cover: Abelian VarietiesAbelian Varieties
by
Introduction to both the geometry and the arithmetic of abelian varieties. It includes a discussion of the theorems of Honda and Tate concerning abelian varieties over finite fields and the paper of Faltings in which he proves Mordell's Conjecture.
(8532 views)
Book cover: An Introduction to Complex Algebraic GeometryAn Introduction to Complex Algebraic Geometry
by - Institut Fourier Grenoble
This is an advanced course in complex algebraic geometry presupposing only some familiarity with theory of algebraic curves or Riemann surfaces. The goal is to understand the Enriques classification of surfaces from the point of view of Mori-theory.
(6579 views)
Book cover: Classical Algebraic Geometry: A Modern ViewClassical Algebraic Geometry: A Modern View
by - Cambridge University Press
The main purpose of the present treatise is to give an account of some of the topics in algebraic geometry which while having occupied the minds of many mathematicians in previous generations have fallen out of fashion in modern times.
(4592 views)
Book cover: Lectures on Deformations of SingularitiesLectures on Deformations of Singularities
by - Tata Institute of Fundamental Research
These notes are based on a series of lectures given in 1973. The lectures are centered about the work of M. Scahlessinger and R. Elkik on infinitesimal deformations. Contents: Formal Theory and Computations; Elkik's Theorems on Algebraization.
(5192 views)