**Determinantal Rings**

by Winfried Bruns, Udo Vetter

**Publisher**: Springer 1988**ISBN/ASIN**: 3540194681**ISBN-13**: 9783540194682**Number of pages**: 244

**Description**:

Determinantal rings and varieties have been a central topic of commutative algebra and algebraic geometry. Their study has attracted many prominent researchers and has motivated the creation of theories which may now be considered part of general commutative ring theory. The book gives a first coherent treatment of the structure of determinantal rings. The main approach is via the theory of algebras with straightening law.

Download or read it online for free here:

**Download link**

(1.2MB, PDF)

## Similar books

**Multiplication of Vectors and Structure of 3D Euclidean Space**

by

**Miroslav Josipovic**-

**viXra**

This text is a motivational survey of geometric algebra in 3D. The intention here was to use simple examples and reader is referred to the independent problem solving. The active reading of text is recommended, with paper and pencil in hand.

(

**1196**views)

**Mirror Symmetry**

by

**Cumrun Vafa, Eric Zaslow**-

**American Mathematical Society**

The book provides an introduction to the field of mirror symmetry from both a mathematical and physical perspective. After covering the relevant background material, the monograph is devoted to the proof of mirror symmetry from various viewpoints.

(

**7496**views)

**Ample Subvarieties of Algebraic Varieties**

by

**Robin Hartshorne**-

**Springer**

These notes are an enlarged version of a three-month course of lectures. Their style is informal. I hope they will serve as an introduction to some current research topics, for students who have had a one year course in modern algebraic geometry.

(

**2228**views)

**An Introduction to Complex Algebraic Geometry**

by

**Chris Peters**-

**Institut Fourier Grenoble**

This is an advanced course in complex algebraic geometry presupposing only some familiarity with theory of algebraic curves or Riemann surfaces. The goal is to understand the Enriques classification of surfaces from the point of view of Mori-theory.

(

**5778**views)