Logo

Introduction to Stokes Structures

Small book cover: Introduction to Stokes Structures

Introduction to Stokes Structures
by

Publisher: arXiv
Number of pages: 157

Description:
The purpose of these lectures is to introduce the notion of a Stokes-perverse sheaf as a receptacle for the Riemann-Hilbert correspondence for holonomic D-modules. They develop the original idea of P. Deligne in dimension one, and make it enter the frame of perverse sheaves. They also give a first step for a general definition in higher dimension, and make explicit particular cases of the Riemann-Hilbert correspondence, relying on recent results of T. Mochizuki.

Home page url

Download or read it online for free here:
Download link
(1.2MB, PDF)

Similar books

Book cover: Strings and GeometryStrings and Geometry
by - American Mathematical Society
This volume highlights the interface between string theory and algebraic geometry. The topics covered include manifolds of special holonomy, supergravity, supersymmetry, D-branes, the McKay correspondence and the Fourier-Mukai transform.
(13561 views)
Book cover: An Introduction to Complex Algebraic GeometryAn Introduction to Complex Algebraic Geometry
by - Institut Fourier Grenoble
This is an advanced course in complex algebraic geometry presupposing only some familiarity with theory of algebraic curves or Riemann surfaces. The goal is to understand the Enriques classification of surfaces from the point of view of Mori-theory.
(10489 views)
Book cover: Abel's Theorem and the Allied TheoryAbel's Theorem and the Allied Theory
by - Cambridge University Press
This classic book covers the whole of algebraic geometry and associated theories. Baker discusses the subject in terms of transcendental functions, and theta functions in particular. Many of the ideas put forward are of continuing relevance today.
(7611 views)
Book cover: Lectures on Moduli of CurvesLectures on Moduli of Curves
by - Tata Institute of Fundamental Research
These lecture notes are based on some lectures given in 1980. The object of the lectures was to construct a projective moduli space for stable curves of genus greater than or equal two using Mumford's geometric invariant theory.
(9165 views)