Logo

Introduction to Stokes Structures

Small book cover: Introduction to Stokes Structures

Introduction to Stokes Structures
by

Publisher: arXiv
Number of pages: 157

Description:
The purpose of these lectures is to introduce the notion of a Stokes-perverse sheaf as a receptacle for the Riemann-Hilbert correspondence for holonomic D-modules. They develop the original idea of P. Deligne in dimension one, and make it enter the frame of perverse sheaves. They also give a first step for a general definition in higher dimension, and make explicit particular cases of the Riemann-Hilbert correspondence, relying on recent results of T. Mochizuki.

Home page url

Download or read it online for free here:
Download link
(1.2MB, PDF)

Similar books

Book cover: Algebraic GeometryAlgebraic Geometry
by - University of Kaiserslautern
From the contents: Introduction; Affine varieties; Functions, morphisms, and varieties; Projective varieties; Dimension; Schemes; First applications of scheme theory; More about sheaves; Cohomology of sheaves; Intersection theory; Chern classes.
(7575 views)
Book cover: Analysis on Homogeneous SpacesAnalysis on Homogeneous Spaces
by - Royal Institute of Technology Stockholm
The main goal of these notes is to give a proof of the basic facts of harmonic analysis on compact symmetric spaces and then to apply these to concrete problems involving things such as the Radon and related transforms on these spaces.
(4070 views)
Book cover: Geometric Complexity Theory: An Introduction for GeometersGeometric Complexity Theory: An Introduction for Geometers
by - arXiv
This is survey of recent developments in, and a tutorial on, the approach to P v. NP and related questions called Geometric Complexity Theory. The article is written to be accessible to graduate students. Numerous open questions are presented.
(3038 views)
Book cover: Classical Algebraic Geometry: A Modern ViewClassical Algebraic Geometry: A Modern View
by - Cambridge University Press
The main purpose of the present treatise is to give an account of some of the topics in algebraic geometry which while having occupied the minds of many mathematicians in previous generations have fallen out of fashion in modern times.
(3370 views)