**Introduction to Stokes Structures**

by Claude Sabbah

**Publisher**: arXiv 2010**Number of pages**: 157

**Description**:

The purpose of these lectures is to introduce the notion of a Stokes-perverse sheaf as a receptacle for the Riemann-Hilbert correspondence for holonomic D-modules. They develop the original idea of P. Deligne in dimension one, and make it enter the frame of perverse sheaves. They also give a first step for a general definition in higher dimension, and make explicit particular cases of the Riemann-Hilbert correspondence, relying on recent results of T. Mochizuki.

Download or read it online for free here:

**Download link**

(1.2MB, PDF)

## Similar books

**Strings and Geometry**

by

**M. Douglas, J. Gauntlett, M. Gross**-

**American Mathematical Society**

This volume highlights the interface between string theory and algebraic geometry. The topics covered include manifolds of special holonomy, supergravity, supersymmetry, D-branes, the McKay correspondence and the Fourier-Mukai transform.

(

**13561**views)

**An Introduction to Complex Algebraic Geometry**

by

**Chris Peters**-

**Institut Fourier Grenoble**

This is an advanced course in complex algebraic geometry presupposing only some familiarity with theory of algebraic curves or Riemann surfaces. The goal is to understand the Enriques classification of surfaces from the point of view of Mori-theory.

(

**10489**views)

**Abel's Theorem and the Allied Theory**

by

**H.F. Baker**-

**Cambridge University Press**

This classic book covers the whole of algebraic geometry and associated theories. Baker discusses the subject in terms of transcendental functions, and theta functions in particular. Many of the ideas put forward are of continuing relevance today.

(

**7611**views)

**Lectures on Moduli of Curves**

by

**D. Gieseker**-

**Tata Institute of Fundamental Research**

These lecture notes are based on some lectures given in 1980. The object of the lectures was to construct a projective moduli space for stable curves of genus greater than or equal two using Mumford's geometric invariant theory.

(

**9165**views)