Lectures On Some Fixed Point Theorems Of Functional Analysis

Small book cover: Lectures On Some Fixed Point Theorems Of Functional Analysis

Lectures On Some Fixed Point Theorems Of Functional Analysis

Publisher: Tata Institute Of Fundamental Research
Number of pages: 147

The book is concerned with the application of a variety of methods to both non-linear (fixed point) problems and linear (eigenvalue) problems in infinite dimensional spaces. A wide choice of techniques is available for linear problems, and I have usually chosen to use those that give something more than existence theorems.

Download or read it online for free here:
Download link
(580KB, PDF)

Similar books

Book cover: Basic Analysis Gently Done: Topological Vector SpacesBasic Analysis Gently Done: Topological Vector Spaces
by - King's College, London
These notes are based on lectures given as part of a mathematics MSc program. The approach here is to discuss topological vector spaces - with normed spaces considered as special cases. Contents: Topological Spaces; Nets; Product Spaces; etc.
Book cover: Functional Analysis Lecture NotesFunctional Analysis Lecture Notes
by - University of East Anglia
Lecture notes for a 3rd year undergraduate course in functional analysis. By the end of the course, you should have a good understanding of normed vector spaces, Hilbert and Banach spaces, fixed point theorems and examples of function spaces.
Book cover: Functional AnalysisFunctional Analysis
by - Lancaster University
These lecture notes are an expanded version of a set written for a course given to final-year undergraduates at the University of Oxford. A thorough understanding of Banach and Hilbert spaces is a prerequisite for this material.
Book cover: Topics in Real and Functional AnalysisTopics in Real and Functional Analysis
by - Universitaet Wien
This manuscript provides a brief introduction to Real and (linear and nonlinear) Functional Analysis. It covers basic Hilbert and Banach space theory as well as basic measure theory including Lebesgue spaces and the Fourier transform.