Lectures on Riemann Matrices

Small book cover: Lectures on Riemann Matrices

Lectures on Riemann Matrices

Publisher: Tata Institute of Fundamental Research
Number of pages: 101

In this course of lectures, we shall be concerned with a systematic study of Riemann matrices which arise in a natural way from the theory of abelian functions. Contents: Abelian Functions; Commutator-algebra of a R-matrix; Division algebras over Q with a positive involution; Cyclic algebras; Division algebras over Q; Positive involutions of the second kind in division algebras; Existence of R-matrices with given commutator-algebra; Modular groups associated with Riemann matrices.

Download or read it online for free here:
Download link
(600KB, PDF)

Similar books

Book cover: Lectures on Entire FunctionsLectures on Entire Functions
by - American Mathematical Society
This monograph aims to expose the main facts of the theory of entire functions and to give their applications in real and functional analysis. The general theory starts with the fundamental results on the growth of entire functions of finite order.
Book cover: Elliptic Functions and Elliptic CurvesElliptic Functions and Elliptic Curves
by - Institut de Mathematiques de Jussieu
Contents: Introduction; Abel's Method; A Crash Course on Riemann Surfaces; Cubic curves; Elliptic functions; Theta functions; Construction of elliptic functions; Lemniscatology or Complex Multiplication by Z[i]; Group law on smooth cubic curves.
Book cover: Complex AnalysisComplex Analysis
by - Kobenhavns Universitet
Contents: Holomorphic functions; Contour integrals and primitives; The theorems of Cauchy; Applications of Cauchy's integral formula; Zeros and isolated singularities; The calculus of residues; The maximum modulus principle; Moebius transformations.
Book cover: Stability, Riemann Surfaces, Conformal Mappings: Complex Functions Theory a-3Stability, Riemann Surfaces, Conformal Mappings: Complex Functions Theory a-3
by - BookBoon
The book on complex functions theory. From the table of contents: Introduction; The argument principle, and criteria of stability; Many-valued functions and Riemann surfaces; Conformal mappings and the Dirichlet problem; Index.