**Lectures on Riemann Matrices**

by C.L. Siegel

**Publisher**: Tata Institute of Fundamental Research 1963**ISBN/ASIN**: B000OK34HM**Number of pages**: 101

**Description**:

In this course of lectures, we shall be concerned with a systematic study of Riemann matrices which arise in a natural way from the theory of abelian functions. Contents: Abelian Functions; Commutator-algebra of a R-matrix; Division algebras over Q with a positive involution; Cyclic algebras; Division algebras over Q; Positive involutions of the second kind in division algebras; Existence of R-matrices with given commutator-algebra; Modular groups associated with Riemann matrices.

Download or read it online for free here:

**Download link**

(600KB, PDF)

## Similar books

**Lectures on Entire Functions**

by

**B. Ya. Levin**-

**American Mathematical Society**

This monograph aims to expose the main facts of the theory of entire functions and to give their applications in real and functional analysis. The general theory starts with the fundamental results on the growth of entire functions of finite order.

(

**10240**views)

**Elements of the Theory of Functions of a Complex Variable**

by

**G.E. Fisher, I.J. Schwatt**-

**Philadelphia G.E. Fisher**

Contents: Geometric representation of imaginary quantities; Functions of a complex variable in general; Multiform functions; Integrals with complex variables; General properties of functions; Infinite and infinitesimal values of functions; etc.

(

**2947**views)

**Introduction to Complex Analysis**

by

**W W L Chen**-

**Macquarie University**

Introduction to some of the basic ideas in complex analysis: complex numbers; foundations of complex analysis; complex differentiation; complex integrals; Cauchy's integral theorem; Cauchy's integral formula; Taylor series; Laurent series; etc.

(

**10741**views)

**Calculus of Residua: Complex Functions Theory a-2**

by

**Leif Mejlbro**-

**BookBoon**

This is the second part in the series of books on complex functions theory. From the table of contents: Introduction; Power Series; Harmonic Functions; Laurent Series and Residua; Applications of the Calculus of Residua; Index.

(

**6606**views)