Logo

The Hauptvermutung Book: A Collection of Papers on the Topology of Manifolds

Large book cover: The Hauptvermutung Book: A Collection of Papers on the Topology of Manifolds

The Hauptvermutung Book: A Collection of Papers on the Topology of Manifolds
by

Publisher: Springer
ISBN/ASIN: 9048147352
ISBN-13: 9789048147359
Number of pages: 194

Description:
The Hauptvermutung is the conjecture that any two triangulations of a polyhedron are combinatorially equivalent. This conjecture was formulated at the turn of the century, and until its resolution was a central problem of topology. Initially, it was verified for low-dimensional polyhedra, and it might have been expected that further development of high-dimensional topology would lead to a verification in all dimensions.

Download or read it online for free here:
Download link
(740KB, PDF)

Similar books

Book cover: Combinatorial Knot TheoryCombinatorial Knot Theory
by - University of Illinois at Chicago
This book is an introduction to knot theory and to Witten's approach to knot theory via his functional integral. Contents: Topics in combinatorial knot theory; State Models and State Summations; Vassiliev Invariants and Witten's Functional Integral.
(5208 views)
Book cover: Math That Makes You Go WowMath That Makes You Go Wow
by - Ohio State University
This is an innovative project by a group of Yale undergraduates: A Multi-Disciplinary Exploration of Non-Orientable Surfaces. The course is designed to be included as a short segment in a late middle school or early high school math course.
(9974 views)
Book cover: Diffeomorphisms of Elliptic 3-ManifoldsDiffeomorphisms of Elliptic 3-Manifolds
by - arXiv
The elliptic 3-manifolds are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature. For any elliptic 3-manifold M, the inclusion from the isometry group of M to the diffeomorphism group of M is a homotopy equivalence.
(4329 views)
Book cover: A Geometric Approach to Differential FormsA Geometric Approach to Differential Forms
by - arXiv
This is a textbook on differential forms. The primary target audience is sophomore level undergraduates enrolled in a course in vector calculus. Later chapters will be of interest to advanced undergraduate and beginning graduate students.
(8894 views)