**The Hauptvermutung Book: A Collection of Papers on the Topology of Manifolds**

by A.A. Ranicki, et al,

**Publisher**: Springer 1996**ISBN/ASIN**: 9048147352**ISBN-13**: 9789048147359**Number of pages**: 194

**Description**:

The Hauptvermutung is the conjecture that any two triangulations of a polyhedron are combinatorially equivalent. This conjecture was formulated at the turn of the century, and until its resolution was a central problem of topology. Initially, it was verified for low-dimensional polyhedra, and it might have been expected that further development of high-dimensional topology would lead to a verification in all dimensions.

Download or read it online for free here:

**Download link**

(740KB, PDF)

## Similar books

**A Primer on Mapping Class Groups**

by

**Benson Farb, Dan Margalit**-

**Princeton University Press**

Our goal in this book is to explain as many important theorems, examples, and techniques as possible, as quickly and directly as possible, while at the same time giving (nearly) full details and keeping the text (nearly) selfcontained.

(

**6391**views)

**Geometry of Surfaces**

by

**Nigel Hitchin**

Geometry of Surfaces by Nigel Hitchin is a textbook on surfaces. However the author is also going to try and consider surfaces intrinsically, or abstractly, and not necessarily embedded in three-dimensional Euclidean space.

(

**8233**views)

**An Introduction to High Dimensional Knots**

by

**Eiji Ogasa**-

**arXiv**

This is an introductory article on high dimensional knots for the beginners. Is there a nontrivial high dimensional knot? We first answer this question. We explain local moves on high dimensional knots and the projections of high dimensional knots.

(

**2300**views)

**Unsolved Problems in Virtual Knot Theory and Combinatorial Knot Theory**

by

**R. Fenn, D.P. Ilyutko, L.H. Kauffman, V.O. Manturov**-

**arXiv**

The purpose of this paper is to give an introduction to virtual knot theory and to record a collection of research problems that the authors have found fascinating. The paper introduces the theory and discusses some problems in that context.

(

**2445**views)