**Orthonormal Basis in Minkowski Space**

by Aleks Kleyn, Alexandre Laugier

**Publisher**: arXiv 2012**Number of pages**: 132

**Description**:

In this paper, we considered the definition of orthonormal basis in Minkowski space, the structure of metric tensor relative to orthonormal basis, procedure of orthogonalization. Linear transformation of Minkowski space mapping at least one orthonormal basis into orthonormal basis is called motion. The set of motions of Minkowski space V generates not complete group SO(V) which acts single transitive on the basis manifold.

Download or read it online for free here:

**Download link**

(1MB, PDF)

## Similar books

**An introductory course in differential geometry and the Atiyah-Singer index theorem**

by

**Paul Loya**-

**Binghamton University**

This is a lecture-based class on the Atiyah-Singer index theorem, proved in the 60's by Sir Michael Atiyah and Isadore Singer. Their work on this theorem lead to a joint Abel prize in 2004. Requirements: Knowledge of topology and manifolds.

(

**6343**views)

**Introduction to Homological Geometry**

by

**Martin A. Guest**-

**arXiv**

This is an introduction to some of the analytic aspects of quantum cohomology. The small quantum cohomology algebra, regarded as an example of a Frobenius manifold, is described without going into the technicalities of a rigorous definition.

(

**4742**views)

**Natural Operations in Differential Geometry**

by

**Ivan Kolar, Peter W. Michor, Jan Slovak**-

**Springer**

A comprehensive textbook on all basic structures from the theory of jets. It begins with an introduction to differential geometry. After reduction each problem to a finite order setting, the remaining discussion is based on properties of jet spaces.

(

**10694**views)

**Principles of Differential Geometry**

by

**Taha Sochi**-

**viXra**

A collection of notes about differential geometry prepared as part of tutorials about topics and applications related to tensor calculus. They can be used as a reference for a first course on the subject or as part of a course on tensor calculus.

(

**1026**views)