**Orthonormal Basis in Minkowski Space**

by Aleks Kleyn, Alexandre Laugier

**Publisher**: arXiv 2012**Number of pages**: 132

**Description**:

In this paper, we considered the definition of orthonormal basis in Minkowski space, the structure of metric tensor relative to orthonormal basis, procedure of orthogonalization. Linear transformation of Minkowski space mapping at least one orthonormal basis into orthonormal basis is called motion. The set of motions of Minkowski space V generates not complete group SO(V) which acts single transitive on the basis manifold.

Download or read it online for free here:

**Download link**

(1MB, PDF)

## Similar books

**Notes on Symmetric Spaces**

by

**Jonathan Holland, Bogdan Ion**-

**arXiv**

Contents: Affine connections and transformations; Symmetric spaces; Orthogonal symmetric Lie algebras; Examples; Noncompact symmetric spaces; Compact semisimple Lie groups; Hermitian symmetric spaces; Classification of real simple Lie algebras.

(

**4060**views)

**Geometric Wave Equations**

by

**Stefan Waldmann**-

**arXiv**

We discuss the solution theory of geometric wave equations as they arise in Lorentzian geometry: for a normally hyperbolic differential operator the existence and uniqueness properties of Green functions and Green operators is discussed.

(

**5346**views)

**Global Theory Of Minimal Surfaces**

by

**David Hoffman**-

**American Mathematical Society**

The wide variety of topics covered make this volume suitable for graduate students and researchers interested in differential geometry. The subjects covered include minimal and constant-mean-curvature submanifolds, Lagrangian geometry, and more.

(

**6615**views)

**Noncompact Harmonic Manifolds**

by

**Gerhard Knieper, Norbert Peyerimhoff**-

**arXiv**

We provide a survey on recent results on noncompact simply connected harmonic manifolds, and we also prove many new results, both for general noncompact harmonic manifolds and for noncompact harmonic manifolds with purely exponential volume growth.

(

**3450**views)