Logo

Orthonormal Basis in Minkowski Space

Small book cover: Orthonormal Basis in Minkowski Space

Orthonormal Basis in Minkowski Space
by

Publisher: arXiv
Number of pages: 132

Description:
In this paper, we considered the definition of orthonormal basis in Minkowski space, the structure of metric tensor relative to orthonormal basis, procedure of orthogonalization. Linear transformation of Minkowski space mapping at least one orthonormal basis into orthonormal basis is called motion. The set of motions of Minkowski space V generates not complete group SO(V) which acts single transitive on the basis manifold.

Home page url

Download or read it online for free here:
Download link
(1MB, PDF)

Similar books

Book cover: Exterior Differential SystemsExterior Differential Systems
by - MSRI
An exterior differential system is a system of equations on a manifold defined by equating to zero a number of exterior differential forms. This book gives a treatment of exterior differential systems. It includes both the theory and applications.
(1817 views)
Book cover: Gauge Theory for Fiber BundlesGauge Theory for Fiber Bundles
by - Universitaet Wien
Gauge theory usually investigates the space of principal connections on a principal fiber bundle (P,p,M,G) and its orbit space under the action of the gauge group (called the moduli space), which is the group of all principal bundle automorphisms...
(4598 views)
Book cover: Geometric Wave EquationsGeometric Wave Equations
by - arXiv
We discuss the solution theory of geometric wave equations as they arise in Lorentzian geometry: for a normally hyperbolic differential operator the existence and uniqueness properties of Green functions and Green operators is discussed.
(5019 views)
Book cover: Exterior Differential Systems and Euler-Lagrange Partial Differential EquationsExterior Differential Systems and Euler-Lagrange Partial Differential Equations
by - University Of Chicago Press
The authors present the results of their development of a theory of the geometry of differential equations, focusing especially on Lagrangians and Poincare-Cartan forms. They also cover certain aspects of the theory of exterior differential systems.
(11615 views)