Logo

Category Theory and Functional Programming

Small book cover: Category Theory and Functional Programming

Category Theory and Functional Programming
by

Publisher: University of St. Andrews
Number of pages: 99

Description:
This text is intended to provide an introduction to Category Theory that ties into Haskell and functional programming as a source of examples and applications. Topics covered: The definition of categories, special objects and morphisms, functors, natural transformation, (co-)limits and special cases of these, adjunctions, freeness and presentations as categorical constructs, monads and Kleisli arrows, recursion with categorical constructs.

Home page url

Download or read it online for free here:
Read online
(online html)

Similar books

Book cover: Introduction to Categories and Categorical LogicIntroduction to Categories and Categorical Logic
by - arXiv
These notes provide a succinct, accessible introduction to some of the basic ideas of category theory and categorical logic. The main prerequisite is a basic familiarity with the elements of discrete mathematics: sets, relations and functions.
(12219 views)
Book cover: Notes on Categories and GroupoidsNotes on Categories and Groupoids
by - Van Nostrand Reinhold
A self-contained account of the elementary theory of groupoids and some of its uses in group theory and topology. Category theory appears as a secondary topic whenever it is relevant to the main issue, and its treatment is by no means systematic.
(14675 views)
Book cover: Higher Operads, Higher CategoriesHigher Operads, Higher Categories
by - arXiv
Higher-dimensional category theory is the study of n-categories, operads, braided monoidal categories, and other such exotic structures. It draws its inspiration from topology, quantum algebra, mathematical physics, logic, and computer science.
(12111 views)
Book cover: Category Theory Lecture NotesCategory Theory Lecture Notes
by - University of Edinburgh
These notes were written for a course in category theory. The course was designed to be self-contained, drawing most of the examples from category theory itself. It was intended for post-graduate students in theoretical computer science.
(11302 views)