Logo

Category Theory and Functional Programming

Small book cover: Category Theory and Functional Programming

Category Theory and Functional Programming
by

Publisher: University of St. Andrews
Number of pages: 99

Description:
This text is intended to provide an introduction to Category Theory that ties into Haskell and functional programming as a source of examples and applications. Topics covered: The definition of categories, special objects and morphisms, functors, natural transformation, (co-)limits and special cases of these, adjunctions, freeness and presentations as categorical constructs, monads and Kleisli arrows, recursion with categorical constructs.

Home page url

Download or read it online for free here:
Read online
(online html)

Similar books

Book cover: Category Theory Lecture NotesCategory Theory Lecture Notes
by
Categories originally arose in mathematics out of the need of a formalism to describe the passage from one type of mathematical structure to another. These notes form a short summary of some major topics in category theory.
(14321 views)
Book cover: Category Theory in ContextCategory Theory in Context
by - Dover Publications
This is a concise, original text for a one-semester introduction to the subject. The treatment introduces the essential concepts of category theory: categories, functors, natural transformations, the Yoneda lemma, limits and colimits, monads, etc.
(9279 views)
Book cover: Higher-Dimensional Categories: an illustrated guide bookHigher-Dimensional Categories: an illustrated guide book
by - University of Sheffield
This work gives an explanatory introduction to various definitions of higher-dimensional category. The emphasis is on ideas rather than formalities; the aim is to shed light on the formalities by emphasizing the intuitions that lead there.
(15656 views)
Book cover: Higher Operads, Higher CategoriesHigher Operads, Higher Categories
by - arXiv
Higher-dimensional category theory is the study of n-categories, operads, braided monoidal categories, and other such exotic structures. It draws its inspiration from topology, quantum algebra, mathematical physics, logic, and computer science.
(14558 views)