Logo

Category Theory and Functional Programming

Small book cover: Category Theory and Functional Programming

Category Theory and Functional Programming
by

Publisher: University of St. Andrews
Number of pages: 99

Description:
This text is intended to provide an introduction to Category Theory that ties into Haskell and functional programming as a source of examples and applications. Topics covered: The definition of categories, special objects and morphisms, functors, natural transformation, (co-)limits and special cases of these, adjunctions, freeness and presentations as categorical constructs, monads and Kleisli arrows, recursion with categorical constructs.

Home page url

Download or read it online for free here:
Read online
(online html)

Similar books

Book cover: Categories and Homological AlgebraCategories and Homological Algebra
by - UPMC
These notes introduce the language of categories and present the basic notions of homological algebra, first from an elementary point of view, next with a more sophisticated approach, with the introduction of triangulated and derived categories.
(7596 views)
Book cover: Basic Concepts of Enriched Category TheoryBasic Concepts of Enriched Category Theory
by - Cambridge University Press
The book presents a selfcontained account of basic category theory, assuming as prior knowledge only the most elementary categorical concepts. It is designed to supply a connected account of the theory, or at least of a substantial part of it.
(10572 views)
Book cover: Category Theory Lecture NotesCategory Theory Lecture Notes
by
Categories originally arose in mathematics out of the need of a formalism to describe the passage from one type of mathematical structure to another. These notes form a short summary of some major topics in category theory.
(9268 views)
Book cover: Seminar on Triples and Categorical Homology TheorySeminar on Triples and Categorical Homology Theory
by - Springer
This volume concentrates a) on the concept of 'triple' or standard construction with special reference to the associated 'algebras', and b) on homology theories in general categories, based upon triples and simplicial methods.
(8920 views)