**Harmonic Analysis**

by S.R.S. Varadhan

**Publisher**: New York University 2000**Number of pages**: 82

**Description**:

Fourier Series of a periodic function. Fejer kernel. Convergence Properties. Convolution and Fourier Series. Heat Equation. Diagonalization of convolution operators. Fourier Transforms on Rd. Multipliers and singular integral operators. Interpolation. Sobolev Spaces, Applications to PDE. Theorems of Paley-Wiener and Wiener. Hardy Spaces. Prediction. Compact Groups. Peter-Weyl Theorem.

Download or read it online for free here:

**Download link**

(multiple PDF/PS files)

## Similar books

**Notes on Harmonic Analysis**

by

**George Benthien**

Tutorial discussing some of the numerical aspects of practical harmonic analysis. Topics include Historical Background, Fourier Series and Integral Approximations, Convergence Improvement, Differentiation of Fourier Series and Sigma Factors, etc.

(

**7225**views)

**Lectures on Harmonic Analysis**

by

**Thomas Wolff**-

**American Mathematical Society**

An inside look at the techniques used and developed by the author. The book is based on a graduate course on Fourier analysis he taught at Caltech. It demonstrates how harmonic analysis can provide penetrating insights into deep aspects of analysis.

(

**6940**views)

**Chebyshev and Fourier Spectral Methods**

by

**John P. Boyd**-

**Dover Publications**

The text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, cardinal functions, etc.

(

**14876**views)

**Real Harmonic Analysis**

by

**Pascal Auscher, Lashi Bandara**-

**ANU eView**

This book presents the material covered in graduate lectures delivered in 2010. Moving from the classical periodic setting to the real line, then to, nowadays, sets with minimal structures, the theory has reached a high level of applicability.

(

**1916**views)