Harmonic Analysis
by S.R.S. Varadhan
Publisher: New York University 2019
Number of pages: 82
Description:
Fourier Series of a periodic function. Fejer kernel. Convergence Properties. Convolution and Fourier Series. Heat Equation. Diagonalization of convolution operators. Fourier Transforms on Rd. Multipliers and singular integral operators. Interpolation. Sobolev Spaces, Applications to PDE. Theorems of Paley-Wiener and Wiener. Hardy Spaces. Prediction. Compact Groups. Peter-Weyl Theorem.
Download or read it online for free here:
Download link
(multiple PDF files)
Similar books

by Christopher Frye, Costas J. Efthimiou - arXiv
The authors prepared this booklet in order to make several useful topics from the theory of special functions, in particular the spherical harmonics and Legendre polynomials for any dimension, available to physics or mathematics undergraduates.
(9110 views)

by George Benthien
Tutorial discussing some of the numerical aspects of practical harmonic analysis. Topics include Historical Background, Fourier Series and Integral Approximations, Convergence Improvement, Differentiation of Fourier Series and Sigma Factors, etc.
(10174 views)

by M. Brelot - Tata Institute of Fundamental Research
In the following we shall develop some results of the axiomatic approaches to potential theory principally some convergence theorems; they may be used as fundamental tools and applied to classical case as we shall indicate sometimes.
(8319 views)

by A. Zygmund, et al. - Princeton University Press
In the theory of convergence and summability, emphasis is placed on the phenomenon of localization whenever such occurs, and in the present paper a certain aspect of this phenomenon will be studied for the problem of best approximation as well.
(6582 views)