**Harmonic Analysis**

by S.R.S. Varadhan

**Publisher**: New York University 2000**Number of pages**: 82

**Description**:

Fourier Series of a periodic function. Fejer kernel. Convergence Properties. Convolution and Fourier Series. Heat Equation. Diagonalization of convolution operators. Fourier Transforms on Rd. Multipliers and singular integral operators. Interpolation. Sobolev Spaces, Applications to PDE. Theorems of Paley-Wiener and Wiener. Hardy Spaces. Prediction. Compact Groups. Peter-Weyl Theorem.

Download or read it online for free here:

**Download link**

(multiple PDF/PS files)

## Similar books

**Lectures on Mean Periodic Functions**

by

**J.P. Kahane**-

**Tata Institute of Fundamental Research**

Mean periodic functions are a generalization of periodic functions. The book considers questions such as Fourier-series, harmonic analysis, the problems of uniqueness, approximation and quasi-analyticity, as problems on mean periodic functions.

(

**5311**views)

**Lectures on Potential Theory**

by

**M. Brelot**-

**Tata Institute of Fundamental Research**

In the following we shall develop some results of the axiomatic approaches to potential theory principally some convergence theorems; they may be used as fundamental tools and applied to classical case as we shall indicate sometimes.

(

**5064**views)

**Introduction to the Theory of Fourier's Series and Integrals**

by

**H. S. Carslaw**-

**Macmillan and co.**

An introductory explanation of the theory of Fourier's series. It covers tests for uniform convergence of series, a thorough treatment of term-by-term integration and second theorem of mean value, enlarged sets of examples on infinite series, etc.

(

**1742**views)

**Lectures on Topics in Mean Periodic Functions and the Two-Radius Theorem**

by

**J. Delsarte**-

**Tata Institute of Fundamental Research**

Subjects treated: transmutations of singular differential operators of the second order in the real case; new results on the theory of mean periodic functions; proof of the two-radius theorem, which is the converse of Gauss's classical theorem.

(

**5040**views)